
(JESC) The Journal of Engineering Science and Computing, Issue II, Volume I, December, 2019

Modified Compact Central Finite Difference Schemes
For The Simulations Of Wave Equation At Any Wave

Number

Hafiz Abdul Wajid
Faculty of Engineering, Islamic University of Madinah, Saudi Arabia

hawajid@iu.edu.sa
and

Hifza Iqbal
Faculty of Science, University of Lahore, Pakistan

iqbalhifza3@gmail.com

Abstract

In this paper, we present modified central finite difference (C.F.D.) schemes for solution of the
wave equation. The modified schemes (a) provide highly accurate solutions at nodes of the spatial
grid for all time steps; (b) preserve the compact stencil structure as of standard C.F.D. scheme and
higher order accuracy is achieved without implementation of new code; (c) offer highly accurate
solutions for low as well as high wave numbers without use of fine grid. Finally, in order to dis-
play superiority of modified C.F.D. schemes numerical computations and graphs are presented for
applications such vibrating string and wave propagations compared with standard C.F.D. schemes.
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 المخططات المدمجة للفروق المنتهية المركزية المعدلة لمحاكاة معادلة الموجة في أي رقم موجة

  ( لحلّ معادلة الموجة. توفر المخططات المعدلةC.F.Dفي هذه الورقة، نقدم مخططات معدلة للفروق المنتهية المركزية )

أ( عقدًا دقيقًة للغاية لحلّ الشبكة المكانية لجميع المراحل الزمنية؛ )ب( الحفاظ على هياكل الاستنسل المدمجة لمعيار  )

C.F.D  يتم تحقيق مخطط ودقة ترتيب عالية دون تطبيق رمز جديد؛ )ج( تقديم حلول دقيقة للغاية لأعداد الموجات

تعديل الرسوم البيانية   C.F.Dلدقيقة. أخيراً، من أجل إظهار تفوق المنخفضة وكذلك العالية دون استخدام الشبكة ا

والحسابات الرقمية يتم تقديمها للتطبيقات مثل انتشار الأحبال والموجات الاهتزازية مقارنة مع معيار مخططات  

C.F.D. 
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1 Introduction

In todays era of science and technology, we are all surrounded by waves in the form of microwave
oven, cell phones, ultrasound scans and radar systems etc. Sound basics of waves and under-
standing of their propagating nature can lead to improve life of human existance and can help us
for future explorations of both nature and universe around us. However, complex mathematical
form of such phenomenon either time independent or dependent poses a challenge to physicists,
engineers and mathematicians to find explicit analytical solutions. This is often tedious and in
many circumstances even not realistically possible. This invites numerical analysts to step in, and
make efforts to make an impossible thing a possible one. Hence, efficient and reliable numerical
methods are required to deal with such problems. In history a tremendous work has come forth by
many [1, 2, 3, 4, 5, 6, 7, 8]. Unfortunately, by use of these discretization schemes issues known as
numerical dispersion and numerical dissipation in wave propagations literature are born .

We now list a few of remarkable contributions regarding time independent form of wave equa-
tion for large wave numbers. In [9, 10, 11] compact finite difference schemes were presented
for Helmholtz equation. Properties such as convergence and accuracy were discussed in detail.
However, Nehrbass, Jevtic and Lee [12] in 1998, introduced a novel representation of the second
order central finite difference (C.F.D.) scheme by redefining the usual second order C.F.D. approx-
imation with a central node of 2cos(κh)+ (κh)2 instead of 2. This idea was further extended by
Yau and Li [13] where they presented exact construction of non-reflecting boundary condition. In
[14], an alternative approach was adopted for the construction of modified central finite difference
schemes for simulations of Helmholtz equation at any wave number for uniform grids only using
Bloch wave property. The idea proposed in [14] was further extended for the construction of
modified C.F.D. schemes for adaptive grids [15]. In this work we adopt the approach presented in
[14, 15] for time harmonic wave equation and extend this for time dependent wave equation.

The organization of the paper is as follows. In Section 2, we present framework for the con-
struction of modified compact central finite difference schemes. In Section 3, numerical examples
are presented and in final section schemes are constructed for two dimensional problem and dis-
persion analysis is presented.

2 Framework for the construction of modified compact central
finite difference schemes

We consider the one dimensional wave equation

∂ 2u
∂x2 =

1
c2

∂ 2u
∂ t2 u = u(x, t) and c > 0 represents wave speed (1)
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in order to motivate the ideas for the construction of modified compact C.F.D. schemes.

2.1 Construction of modified compact explicit C.F.D. scheme

For the construction of exact C.F.D. schemes, we adopt the idea of Nehrbass and Li presented
in [12] for Helmholtz equation. Here we use this idea for wave equation (1). We replace partial
derivatives, ∂ 2u/∂x2 and ∂ 2u/∂ t2, present in (1), by standard second order C.F.D. approximation
such that coefficient of middle node 2 is replaced with α giving

∂ 2u
∂x2 =

1
h2

[
un

m+1−αun
m +un

m−1
]
+O(h2),

and
∂ 2u
∂ t2 =

1
`2

[
un+1

m −αun
m +un−1

m
]
+O(`2).

Inserting above approximations in (1) and performing ordinary simplifications, we get

un+1
m = (cr)2[un

m+1 +un
m−1]+α(1− (cr)2)un

m−un−1
m +O(h2)+O(`2) (2)

with r = `/h. The unknown α in (2) was termed as dispersion reducing parameter in [12]. A
solution of the form un

m = ei(mκh−nω`), known as plane wave solution when substituted in (2) gives
after simplifications

[2
(
(cr)2 cos(κh)− cos(ω`)

)
+α(1− (cr)2)]un

m = 0

where κ,ω > 0, are the wave number and frequency respectively. Since un
m 6= 0, and solving for

α , we have

α =
2[(cr)2 cos(κh)− cos(ω`)]

((cr)2−1)
. (3)

With this value of α , (2) results into compact explicit C.F.D. scheme given by

un+1
m = (cr)2(un

m−1 +un
m+1)+2[cos(ω`)− (cr)2 cos(κh)]un

m−un−1
m . (4)

Interestingly, (4) can also be constructed using a very powerful tool known as Bloch wave property

[14] defined by

un
m+ j = un

mei jκh and un+ j̃
m = un

mei j̃ω` ∀ j, j̃ ∈ Z and `,h > 0 (5)

therefore, we have

un
m−1 +un

m+1 = 2cos(κh)un
m and un+1

m +un−1
m = 2cos(ω`)un

m. (6)
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Using (6) in standard explicit C.F.D. scheme with 2 as the coefficient of the middle node, we have

un+1
m − (cr)2[un

m−1 +un
m+1]−2(1− (cr)2)un

m +un−1
m

=−2[(1− (cr)2)− cos(ω`)− (cr)2 cos(κh)]un
m

Rewriting above results into (4) and it is interesting to note that the use of the Bloch wave property
provide exactly the same scheme. Moreover, as given in [14] that with the use of Bloch wave prop-
erty, one can make schemes of any order exact either forward, backward or central for Helmholtz
equation. Considering this modification of standard implicit C.F.D. scheme is presented in next
section.

2.2 Construction of modified compact implicit C.F.D. scheme

This section is devoted for the construction of modified implicit scheme of (1) by replacing time
derivative ∂ 2u/∂ t2 with standard second order C.F.D. approximation whereas spatial derivative
∂ 2u/∂x2 is replaced with weighted average, such that middle node coefficient 2 is replaced with α

given by
∂ 2u
∂ t2 =

1
`2

[
un−1

m +un+1
m −2un

m
]
+O(`2) and

∂ 2u
∂x2 =

1
4h2

{
un+1

m+1−αun+1
m +un+1

m−1 +2
(
un

m−1−αun
m +un

m+1
)

+un−1
m+1−αun−1

m +un−1
m−1

}
+O(h2).

Substitution of above approximations in (1) after simplifications give

(cr)2

4

{
un+1

m+1−αun+1
m +un+1

m−1 +2
(
un

m−1−αun
m +un

m+1
)

+un−1
m+1−αun−1

m +un−1
m−1

}
= un+1

m −2un
m +un−1

m . (7)

Now, using Bloch wave property given in (5) and performing straight forward calculations, equa-
tion (7) gives following value of α:

α = 2cos(κh)+
4

(cr)2
1− cos(ω`)

1+ cos(ω`)
. (8)
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Inserting value of α from (8) into (7) gives

−(cr)2

4
[
un+1

m−1 +un+1
m+1
]
=

(cr)2

2
[
un

m−1 +un
m+1
]
+

(cr)2

4
[
un−1

m+1 +un−1
m−1
]

−
[

1+
(cr)2

2
cos(κh)− cos(ω`)−1

cos(ω`)+1

]
un+1

m +

[
2− (cr)2 cos(κh)−2

cos(ω`)−1
cos(ω`)+1

]
un

m

−
[

1+
(cr)2

2
cos(κh)− cos(ω`)−1

cos(ω`)+1

]
un−1

m (9)

which is the required form of modified compact implicit C.F.D. scheme.

2.3 Combined form of modified compact explicit and implicit C.F.D. schemes

We now present combined form of both modified explicit and implicit schemes obtained in (4) and
(9) by introducing parameter β given by{

1+β

(
2(cr)2 cos(κh)+4

[
1− cos(ω`)

1+ cos(ω`)

])}
un+1

m − (cr)2
β
(
un+1

m−1 +un+1
m+1
)
+

= (cr)2(1−2β )un
m−1 +

{
8β +2(3β −1)(cr)2 cos(κh)+2(1−4β )cos(ω`)

+8β

[
cos(ω`)−1
cos(ω`)+1

]}
un

m− (cr)2(−1+2β )un
m+1 +(cr)2

β (un−1
m−1 +un−1

m+1)

−

{
1+β

(
2(cr)2 cos(κh)+4

[
1− cos(ω`)

1+ cos(ω`)

])}
un−1

m . (10)

Choosing β = 0 in (10), results into (4) whilst for β = 1/4, (10) reduces to (9).
Interestingly, series expansions of cos(ω`) and cos(κh) present in (10) in terms of ω` and κh

results into combined representation of standard explicit and implicit schemes obtained in [16]
when ω`→ 0 and κh→ 0 given below

−(cr)2
β (un+1

m+1 +un+1
m−1)+(1+2(cr)2

β )un+1
m = 2(1+(cr)2(2β −1))un

m

+(cr)2(1−2β )[un
m−1 +un

m+1]+ (cr)2
β [un−1

m+1 +un−1
m−1]− (1+2(cr)2

β )un−1
m . (11)

This is an attractive feature of modified scheme and is consistent with the requirement of not using
finer mesh size especially when simulations are required for high wave numbers.
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2.4 Numerical Dispersion of Modified and Standard Schemes: A Compari-
son

Now to present dispersion analysis of modified compact explicit and implicit C.F.D. schemes, we
substitute a plane wave solution of the form un

m = ei(mκ̃h−ωn`) in combined form (10) and obtain
after straight forward manipulations

(cr)2[cos(κ̃h)− cos(κh)]un
m = 0

where κ̃ is known as the discrete wave number. For a non-trivial solution un
m 6= 0 above equation

implies
κ̃ = κ.

Therefore the modified schemes (10), do not suffer from issues such as numerical dispersion and
dissipation contrary to standard schemes (11) as reported in [14, 16].

3 Numerical Examples

We now test performance of modified schemes by solving problems such as a vibrating string and
propagation of wave from left to right in following sections.

3.1 A vibrating string problem

Consider one dimensional wave equation

∂ 2u
∂ t2 =

∂ 2u
∂x2 , x ∈ (0,1) and t > 0 (12)

with boundary conditions,
u(0, t) = u(1, t) = 0 t > 0 (13)

and initial conditions

u(x,0) = sin(πx) and
∂u(x,0)

∂ t
= ut(x,0) = 0 x ∈ [0,1]. (14)

This problem has an exact solution [16] given by

u(x, t) = sin(πx)cos(πt). (15)

This problem describes a string tied at both ends vibrating up and down with sin(πx) as initial dis-
placement and zero initial velocity. Initial and boundary conditions are chosen such that continuity
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between them is preserved with c2 = 1 as speed of the medium. Spatial (0,1) and time t ≥ 0 do-
mains are discretized into N subintervals of length h = 1/N and length ` respectively. This means
each node is represented by coordinates of the form: (xm, tn) = (mh,n`) for m = 0,1,2, · · · ,N and
n = 0,1,2, · · · . Moreover, for this problem error is defined by Zn

m = |un
m−Ũn

m| [16] with un
m and Ũn

m

as exact and numerical solutions respectively. For time t = 1 highest value of the error is picked
for spatial range x ∈ (0,1).

3.2 Combined form of standard and modified C.F.D. schemes

First of all, we give combined form of standard and modified C.F.D. schemes given for c = 1

−r2
β (un+1

m+1 +un+1
m−1)+(1+2r2

β )un+1
m

= 2(1+2r2
β − r2)un

m + r2(1−2β )[un
m−1 +un

m+1]

+r2
β [un−1

m+1 +un−1
m−1]− (1+2r2

β )un−1
m (16)

and{
1+β

(
2r2 cos(hπ)+4

[
1− cos(`π)
1+ cos(`π)

])}
un+1

m − r2
β (un+1

m−1 +un+1
m+1)

= r2(1−2β )[un
m−1 +un

m+1]+

{
8β +2(−1+3β )r2 cos(hπ)

+2(1−4β )cos(`π)+8β

(
cos(`π)−1
cos(`π)+1

)}
un

m

+ r2
β (un−1

m−1 +un−1
m+1)−

{
1+β

(
2r2 cos(hπ)+4

[
1− cos(`π)
1+ cos(`π)

])}
un−1

m . (17)

Above schemes are valid for all internal nodes of the spatial grid and for boundary nodes solution
is already known as Dirichlet boundary conditions are chosen. Also, above schemes result into
standard explicit and standard implicit forms for β = 0 and β = 1/4 respectively.

3.3 Solution at first time step for standard and modified schemes

We now consider initial velocity given in (14), that is

ut(x,0) = 0.
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and replacing time derivative by second order C.F.D. approximation gives

1
2`
(
un+1

m −un−1
m
)
= 0⇒ un−1

m = un+1
m . (18)

Inserting (18) into (16) and (17), we obtain desired schemes for initial time step for standard

−r2
β (un+1

m+1 +un+1
m−1)+2(1+2r2

β )un+1
m

= 2(1+2r2
β − r2)un

m + r2(1−2β )[un
m−1 +un

m+1]

+r2
β [un−1

m+1 +un−1
m−1]

and modified scheme

2

{
1+β

(
2r2 cos(hπ)+4

[
1− cos(`π)
1+ cos(`π)

])}
un+1

m − r2
β (un+1

m−1 +un+1
m+1)

= r2(1−2β )[un
m−1 +un

m+1]+

{
8β +2(−1+3β )r2 cos(hπ)

+2(1−4β )cos(`π)+8β

(
cos(`π)−1
cos(`π)+1

)}
un

m + r2
β (un−1

m−1 +un−1
m+1)

−2sin(`π)sin(πx)sin(πt)

{
1+β

(
2r2 cos(hπ)+4

[
1− cos(`π)
1+ cos(`π)

])}
.

3.4 Analysis of vibrating string problem for all schemes

Table 1: Errors analysis for vibrating string problem with standard and modified explicit schemes

One Vibrating Mode Seven Vibrating Modes

Scheme Standard Modified Standard Modified

r=0.25 0.73∗10−4 1.99∗10−15 1.6328 8.88∗10−16

r=0.5 0.47∗10−4 2.22∗10−16 1.9286 6.66∗10−16

r=1 0 0 0 0

r=2 0.82∗10−3 1.33∗10−13 67163 4.49∗10−12

r=5 0.99∗10−1 8.43∗10−14 2994.5 5.16∗10−14

Comparison of results obtained with standard and modified C.F.D explicit schemes in case
of single as well as seven vibrating modes are given in Table 1 for constant value of h = 0.1
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Table 2: Errors analysis for vibrating string problem with standard and modified implicit schemes

One Vibrating Mode Seven Vibrating Modes

Scheme Standard Modified Standard Modified

r=0.25 0.10∗10−3 2.99∗10−15 1.24764 1.8∗10−12

r=0.5 0.18∗10−3 1.33∗10−15 0.49350 5.42∗10−12

r=1 0.72∗10−3 0 0.59156 6.1∗10−13

r=2 0.59∗10−2 2.22∗10−16 0.53966 2.13∗10−12

r=5 0.116021 2.22∗10−16 1.561386 9.2∗10−11

and varying values of r = 0.25,0.5,1,2,5, with temporal step sizes l = 0.025,0.05,0.1,0.2,0.5
respectively.

It is evident from Table 1 that highly accurate results are obtained with modified schemes
compared with standard schemes even with increasing values of r for either one or seven vibrating
modes. Interestingly, standard scheme performed good for lower values of r = 0.25,0.5 and also
for r = 2 for only one vibrating mode case. However, standard scheme fails to provide accurate
results in case of increasing i,e. seven vibrating modes. Therefore, increasing vibrations worsen
dispersive and dissipative behaviour in case of standard schemes whereas modified schemes still
provides highly accurate results even for large value of r = 5. Practical applications require to
choose very small values of r in case of standard schemes which adds to prohibitive computational
cost to achieve certain level of accuracy. On contrary, modified schemes offers highly promising
results even for r = 5

For r = 1, which is known as magical number [16, 17], both standard and modified explicit
schemes provide dispersion less results with zero error which is a proven charactersitic of explicit
scheme [16, 17]. Explicit modified scheme constructed also fulfils this characteristic. Standard
implicit scheme does not fulfil this characteristic as is evident from Table 2, however modified
scheme results into dispersion and dissipation free results for single vibrating mode. Whilst for
seven vibrating modes implicit schemes provides highly accurate results. In general modified
scheme out performs compared to standard scheme (see Tables 1 and 2).

In Figure 1 dispersion error behaviour is shown for three modes of vibrating string using all
schemes. Dispersion is prominent for standard explicit and implicit schemes where as modified
schemes are perfect interpolate exact solution (see Figure 1 (a),(c) and (d)). Also, dispersion free
behaviour is evident in case of magical number i,e. r = 1 for both standard and modified explicit
schemes (see Figure 1 (b)). However, dispersion is prominent in case of standard implicit scheme
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in contrast to the modified implicit scheme which is almost dispersion less (see Figure 1 (d)). Same
findings were reported in [6, 7] in case of problems with highly oscillatory nature.

(a) Explicit schemes with r = 4 (b) Explicit schemes with r = 1

(c) Implicit schemes with r = 5 (d) Implicit schemes with r = 1

Figure 1: Behavious of all schemes for three vibrating modes.

3.5 A travelling wave from left to right

We now solve (1) with boundary conditions,

u(0, t) = eiκx and ux(1, t)+ut(1, t) = 0 t > 0 (19)

and initial conditions

u(x,0) = eiκx and ut(x,0) =−iκeiκx 0≤ x≤ 1. (20)
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The exact solution of this problem is

u(x, t) = eiκ(x−t). (21)

Above example models a wave travelling from left to right with −iκeiκx initial velocity and
medium speed is taken as c2 = 1. Also, same configurations for grid are used as were used in
model problem one. For this problem discrete l∞ norm, defined as [16]

E∞ = maxm=1,2,··· ,Nmaxn=1,2,··· ,|un
m−Ũn

m|.

is considered. Furthermore, for this problem only standard explicit scheme and its modified version
is considered as one can construct modified implicit scheme following similar steps.

3.5.1 Standard explicit C.F.D scheme of second order for travelling wave problem

In order to avoid repetitions, we obtain the desired scheme by choosing β = 0 into (16)

un+1
m = r2(un

m−1 +un
m+1)+2(1− r2)un

m−un−1
m (22)

with r = `/h. We can apply scheme (22) only at interior nodes of the grid as using this at right end
node i,e. (Nth node) gives fictitious node. Fictitious nodes also known as fantom nodes and always
lie outside the boundary. As solution is not known at this node and consequently removal of this
node is required which is considered in next section.

3.5.2 Solution at right end node for standard scheme

Consider non-reflecting boundary condition given by

ux(x, t)+ut(x, t) = 0. (23)

Replacing derivatives in (23) by C.F.D. approximation of second order given below

ux =
1

2h

[
un

m−1−un
m+1
]
+O(h2) and ut =

1
2`
[
un−1

m +un+1
m
]
+O(`2)

gives after simplifications and rearranging

un+1
m = un

m−1−
un−1

m −un+1
m

r
.
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Now, inserting above value of un+1
m in (22), and performing simplifications gives

un+1
m = 2(1− r)un

m +
2r2

1+ r
un

m−1−
1− r
1+ r

un−1
m .

3.5.3 Solution for first time step for standard scheme

We consider initial velocity given by
ut =−iκun

m. (24)

Replacing temporal derivative with second order C.F.D. approximation leads to

un−1
m = un+1

m +2i`κu(x, t). (25)

Substituting (25) in (22), we obtain scheme given below to calculate solution value at initial time
step

un+1
m = (1− r2− i`κ)un

m +
r2

2
(
un

m−1 +un
m+1
)
.

3.5.4 Modified compact explicit C.F.D. scheme for travelling wave problem

For wave propagation problem, the modified compact explicit C.F.D. scheme has following form:

un+1
m = r2[un

m−1 +un
m+1]−un−1

m −2[r2 cos(κh)− cos(`κ)]un
m (26)

which can only be used at internal nodes, and therefore for solution at right end node, we have next
section.

3.5.5 Solution at right end node for modified scheme

For solution at right end node, we give

un+1
m = un

m−1 +2i(sin(κh)− sin(`κ))un
m +un−1

m −un+1
m

which when inserted into (26) and after simplifications gives

un+1
m =

2
(1+ r2)

[
cos(`κ)+ ir2 sin(κh)− ir2 sin(`κ)− r2 cos(κh)

]
un

m

+

(
2r2

1+ r2

)
un

m−1−
(

1− r2

1+ r2

)
un−1

m .
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3.5.6 Solution for first time step for modified scheme

Now using exact form of (24) given by

un+1
m = un+1

m +2isin(`κ)un
m

in (26) provides scheme for initial time step

un+1
m =

r2

2
[un

m+1 +un
m−1]− [r2 cos(κh)+ isin(`κ)− cos(`κ)]un

m.

Table 3: Error analysis for wave propagation problem for standard explicit scheme

κ (a) r =0.05, h=1 (b) r =0.5, h=0.1 (c) r =1, h=0.01

1010 6.21∗1010 1.27∗1010 1∗1010

108 7.35∗108 2.16∗107 9.99∗107

106 9.03∗106 1.97∗105 9.99∗105

104 3.85∗104 9.98∗103 9.99∗103

102 6.95∗102 2.89∗101 1∗102

100 1.8158 0.7005 0.9999

10−2 4.5∗10−3 7.06∗10−3 1∗10−2

10−4 4.52∗10−5 7.06∗10−5 9.99∗10−5

3.5.7 Analysis of second problem: A travelling wave with standard and modified explicit
schemes

Results obtained for three different combinations (a)r = 0.05,h= 1, (b)r = 0.5,h= 0.1, and (c)r =

1,h = 0.01 with standard and modified explicit schemes are given with varying range of wave
numbers κ in Table (3) and Table (4) respectively. It is evident that for high value of wave number
such as κ = 108,κ = 109 or κ = 1010, modified schemes provide highly accurate results as error
stays less than 10−5 for all combinations (see Table (4)). However, results obtained using standard
scheme are highly erroneous for large values of wave numbers but for very very small values of
wave numbers, i,e. when κh < 1 reliable results can be seen from Table (3).
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Table 4: Errors analysis for wave propagation problem for modified explicit scheme

κ (a) r =0.05, h=1 (b) r =0.5, h=0.1 (c) r =1, h=0.01

1010 3.55∗10−5 6.28∗10−3 6.66∗10−5

108 3.42∗10−7 2.22∗10−7 6.51∗10−7

106 3.51∗10−9 1.98∗10−9 6.67∗10−9

104 3.50∗10−11 2.32∗10−9 6.71∗10−11

102 3.90∗10−13 1.72∗10−13 6.49∗10−13

100 1.95∗10−11 2.37∗10−14 7.72∗10−15

10−2 9.9∗10−12 2.62∗10−14 6.49∗10−17

10−4 2.02∗10−11 5.32∗10−15 0.78∗10−19

For further analysis in Figure 2 results are shown and it is found that wave obtained using
standard scheme shows:

• dispersion (phase lag is evident) for moderate values of wave numbers (Figure 2 (a)−(b));

• erroneous results for wave number to 50 (Figure 2 (c));

• dissipated wave when wave number is 100 (Figure 2 (d));

• On the other hand wave obtained using modified scheme gives nodally exact solutions for
all values of wave numbers.

4 Modified Compact Explicit and Implicit Schemes for Two di-
mensional Case

Consider the two dimensional wave equation given by

∂ 2u
∂x2 +

∂ 2u
∂y2 =

1
c2

∂ 2u
∂ t2 (x,y) ∈ (a,b) and t > 0. (27)
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(a) (b)

(c) (d)

Figure 2: Wave propagation with r = 0.5 for (a) κ = 10, (b) κ = 20, (c) κ = 50, and (d) κ = 100.

In order to construct modified compact explicit scheme, the partial derivatives, ∂ 2u/∂x2,∂ 2u/∂y2

and ∂ 2u/∂ t2, present in (27) are replaced with below given approximation with α chosen as coef-
ficient of the middle node instead of 2 given by

∂ 2u
∂x2 =

1
h2

[
un

i−1, j−αun
i, j +un

i+1, j
]
+O(h2),

∂ 2u
∂y2 =

1
h2

[
un

i, j−1−αun
i, j +un

i, j+1
]
+O(h2),

and
∂ 2u
∂ t2 =

1
`2

[
un−1

i, j −αun
i, j +un+1

i, j

]
+O(`2).

Substituting above approximations in (27) and performing simplifications gives

un+1
i, j = (cr)2 (un

i−1, j +un
i+1, j−αun

i, j +un
i, j−1 +un

i, j+1
)
−un−1

i, j . (28)
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Now the value of α is calculated by inserting un
i, j = ei(h(ik1+ jk2)−ωn`) into (28)

α =
2

(2(cr)2−1)
[
(cr)2 (cos(k1h)+ cos(k2h))− cos(ω`)

]
with k1 = k cos(θ) and k2 = k sin(θ) satisfying k2 = k2

1 + k2
2 and θ is the incident angle. Inserting

this value of α in (28), gives required modified compact explicit scheme for two dimensional case

un+1
i, j = (cr)2 (un

i−1, j +un
i+1, j +un

i, j−1 +un
i, j+1

)
+

2un
i, j

(1−2(cr)2)

[
(cr)2 (cos(k1h)+ cos(k2h))− cos(ω`)

]
−un−1

i, j . (29)

Similarly, modified compact implicit scheme for two dimensional case is given by

(cr)2

4

[
un+1

i−1, j +un+1
i+1, j +un+1

i, j−1 +un+1
i, j+1

]
=−(cr)2

2
[
un

i−1, j +un
i+1, j +un

i, j−1 +un
i, j+1

]
(cr)2

4

[
un−1

i−1, j +un−1
i+1, j +un−1

i, j−1 +un−1
i, j+1

]
+

[
1+

(cr)2

2
(cos(k1h)+ cos(k2h))+

1− cos(ω`)

1− cos(ω`)

](
un−1

i, j +un+1
i, j

)
−
[

2− (cr)2 (cos(k1h)+ cos(k2h))− 2(1− cos(ω`))

(cr)2(1− cos(ω`))

]
un

i, j. (30)

4.1 Dispersion Analysis

Now to avoid repetition, following steps as presented in Section 4.4 inserting a plane wave solution
of the form un

i, j = ei(k̃1ih+k̃2 jh−ωn`), with k̃1, k̃2 as discrete wave numbers into either (29) and (30)
results into following after straight forward manipulations

[cos(k̃1h)− cos(k1h)]+ [cos(k̃2h)− cos(k2h)] = 0

which implies
k̃1 = k1 and k̃2 = k2.

5 Conclusions

In this work range of modified compact central finite difference (C.F.D.) schemes are constructed
in case of rectangular grid for one dimensional transient wave equation. Salient features of these
schemes are given below:

1. they provide compact stencil i,e. minimum number of grid nodes are involved;
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2. they provide dispersion free numerical results;

3. they do not require to write brand new code altogether which means implementation of these
schemes bears no additional cost;

4. cover all range of wave numbers, small as well as large. However, these schemes are con-
structed for large wave number applications;

5. are computationally attractive and cost effective as achieving optimal results do not require
use of fine mesh;

6. leads to standard C.F.D. schemes with series expansion of terms cos(κh) and cos(ω`) present
in modified schemes;

7. provide highly accurate results even for values of r > 1 which is very attractive feature for
practical applications.
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