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Abstract

Community detection in social networks is a problem with considerable interest, since, discovering
communities reveals hidden information about networks. There exist many algorithms to detect
inherent community structures and recently few of them are investigated on social networks. How-
ever, it is non-trivial to decide the best approach in the presence of diverse nature of graphs, in
terms of density and sparsity, and inadequate analysis of the results. Therefore, in this study, we
analyze and compare various algorithms to detect communities in two networks, namely social
and road networks, with varying structural properties. The algorithms under consideration are
evaluated with unique metrics for internal and external connectivity of communities that includes
internal density, average degree, cut ratio, conductance, normalized cut, and average Jaccard Index.
The evaluation results revealed key insights about selected algorithms and underlying community
structures.
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 دراسة تطبيقية لخوارزميات اكتشاف المجتمع على الشبكات الاجتماعية والطرق
المجتمعات  شافكتا  لأن الشديد، تتطلب الاهتمامعويصة مشكلة يمثل  شبكات التواصل الاجتماعيالمجتمع في  تحديدالملخص: 

للكشف عن الهياكل المجتمعية المتأصلة، ويتم في الآونة  الشبكات. توجد العديد من الخوارزميات علىيكشف عن معلومات خفية 
أفضل طريقة في وجود الطبيعة المتنوعة للرسوم البيانية،  ليس مضرا تحديدو الاجتماعية.  الأخيرة فحص عدد قليل منها على الشبكات

ليل النتائج. لذلك، في هذه الدراسة، نقوم بتحليل ومقارنة الخوارزميات المختلفة ملاءمة تحوعدم  المنخفضة. والكثافة الكثافةمن حيث 
 غيرة.متلاكتشاف المجتمعات في شبكتين، وهما الشبكات لاجتماعية والطرق، مع خصائص هيكلية 

 ،باستخدام مقاييس فريدة للتوصيل الداخلي والخارجي للمجتمعات التي تتضمن الكثافة الداخليةقيد الدراسة يتم تقييم الخوارزميات  
أساسية معلومات كشفت نتائج التقييم عن و  جاكار. مؤشرومتوسط  ،والقطع الطبيعيونسبة القطع، والتصريف،  ،الدرجةومتوسط 

 الكامنة.حول الخوارزميات المختارة والهياكل المجتمعية 
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1 Introduction

Cluster, or community structure, is a grouping of graph vertices together such that intra-group edge
density is higher than inter-group edge density [1]. There are plethora of techniques for detecting
communities in a network [1, 2, 3, 4, 5, 6, 7, 8] and it is non-trivial to decide the best approach for
a certain scenario.

There are few initiatives taken in the literature to simplify this task. One of them investigated
graph communities with ground-truth [9], which is not favorable in real life networks. Another
made an evaluation on overlapping communities in [10] that is not the focus of this study. There-
fore, it is essential to evaluate the community detection algorithms considering the inherent struc-
tural properties of graph data and choose respective metric. For instance, the study of LPA [11]
shows poor quality results when applied on a dataset with high clustering coefficient, although as
per author claim it is the best algorithm for detecting communities. Moreover, other studies [9] and
[12] say that it is necessary to use datasets with varying characteristics and corresponding metric
for effective evaluation. For example, when the network contains well-separated non-overlapping
communities, conductance is the best scoring function in such cases.

The existing studies lack behind in diversity of datasets and effective evaluation measures,
which we overcome in this work. We study the problem of community detection in diverse net-
works based on social interactions (email) and physical infrastructure(road), which have varying
structural properties. It provides a validation tool to verify the correctness of the claims in lit-
erature regarding social network communities. We use unique set of measures to evaluate the
resultant communities that includes internal density, 2 average degree, conductance, cut ratio, and
normalized cut.

The key findings of this study are summarized as follows.

• The community detection algorithms studied in this paper have shown consistent perfor-
mance over social graph data in reference to existing benchmark [13].

• We noticed a significant change in proportion of structural properties, neighborhood connec-
tivity and degree distribution, of two social graphs, i.e. email and collaboration network.

• We observed few unexpected behaviors of the selected algorithms in certain cases. For
example, LPA approach has shown poor performance for effectiveness (average degree) of
communities on collaboration network.

2 Existing Work

In this section, we briefly elaborate the existing empirical studies on community detection algo-
rithms and also highlight the differences to our work.
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In one of the most relevant study[13], the authors have presented a universal framework for
comparison that gives equal conditions to evaluate various community detection approaches. The
authors bench-marked a set of algorithms on social networks to better analyze, evaluate, diag-
nose and further improve them. However, this benchmark is limited when it comes to diversity of
networks and evaluation measures. Similarly, G. Misra’s work [14] analyzed eight different com-
munity detection algorithms for access control decisions in a personalized social network. This
study lacks the diversity of the network under-consideration, i.e. social network, and limits the
analysis of community detection algorithms to a specific application scenario.

N. Grag et. al. [15] and Z. Zhao et. al. [16] have studied community detection algorithms
only in the context of modularity, which is one kind of measure to analyze the quality of resultant
communities, with varying size of the graphs rather than the properties . Moreover, they have
not considered variety of community detection algorithms. The most recent empirical study on
community detection algorithms in [17] highlights only their advantages and disadvantages with-
out actual analysis of community structures of the real networks. This study also overlooked the
structural properties of the underlying network for resultant communities.

3 Community Detection Algorithms: An Overview

In this section, We briefly outline the community detection approaches under consideration for this
study.

Community detection is a well known problem to identify and group strongly connected nodes
together in a graph. There are various approaches to detect communities in graphs and often
categorized based on their nature of processing such as local (forming communities from local
structures to the whole graph), global (separating out communities from the entire graph) and tree-
structure (maintaining a tree with branches that represent communities) methods [13]. We chose
six methods1 such that at least one method from each category for representative analysis.

• Clauset Newman Moore (CNM) [1] belongs to a hierarchical clustering strategy that main-
tains hierarchy of the resultant clusters. The hierarchical clustering method follows either
agglomerative or divisive approach. CNM uses classical agglomeration approach that is a
bottom up strategy while divisive method follows top down strategy. CNM optimizes the
modularity of the final partition by making greedy choices. This algorithm is effectively
used for complex networks in research community, and was designed specifically to analyze
the community structures of extremely large networks, i.e. millions of nodes.

• Radicchi [18] is also a type of hierarchical clustering algorithm but unlike CNM, it takes a

1The availability of implementation resources, provided by authors, also affected this selection process.
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divisive approach by starting from the whole graph and splitting it into communities gradu-
ally.

• Label Propagation Algorithm (LPA) [7] is an efficient, near linear time, algorithm to detect
community structures in large-scale networks. It is a semi-supervised algorithm that uses
unlabeled nodes to find out the labels. It has an advantage in running time and performs well
when there is prior information or annotated data.

• TopLeaders[4], i.e. Leadership expansion algorithm, extracts clusters from the graph identi-
fying it as sets, consisting of a leader node and its follower nodes that are close to the leader.
This algorithm requires to select initial k leaders as the number of desired communities.

• Sequential Clique Percolation (SCP) [5] algorithm is based on the clique percolation
method and detects k-clique subgrpahs for a given value of k from dense graph by sequen-
tially inserting edges and keeping track of the emerging community structure. In comparison
to CFinder[19], it finds all the cliques of single size and output the communities for all pos-
sible thresholds, while CFinder finds maximal cliques in a graph and produces communities
of all possible clique sizes. Therefore, we can consider this algorithm as a alternative to
CFinder. Another good thing about SCP algorithm is that it works well with large sparse
graphs, however, it may not be a good option when the graph is very dense or it contains
large size cliques.

• Matrix Blocking Dense Subgraph Extraction (MB-DSGE) [2] algorithm reorders a rela-
tively sparse graph and extracts dense subgraphs as communities. More precisely, for clus-
tering, it constructs a hierarchy tree using matrix blocking technique, which groups similar
columns of an adjacency matrix according to the cosine similarity measure.

4 Experiments

In this section, we explain the details of experiments including environmental setup, algorithms
for comparisons, data sets, and result evaluation criteria. The detailed discussion is provided at the
end.

4.1 Environment Setup

We analyze six representative algorithms to detect communities. These algorithms are imple-
mented on different platforms. Our evaluation criteria is independent of any platform and con-
siders the output results explicitly. Therefore, it is not essential to execute or implement all the
algorithms on a single platform. The implementation detail for each algorithm is as follows. The
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default setting for each algorithm is considered for all subsequent experiments unless stated ex-
plicitly.

• CNM (Clauset Newman Moore) is the agglomeration approach [1]. The authors provide
an executable makefile of their implementation written in C [20]. The original version of
the provided code works on unweighted and undirected graphs. However, later the authors
introduce another version of the code that works on weighted and undirected graphs.

• Radicchi is a divisive hierarchical clustering algorithm[18]. The authors provide binaries
written in C++ [21] along with the source code files.

• LPA (Label Propagation Algorithm) [7]. The implementation is available in R programming
language for LPA [22]. However, we also found LPA’s implementation in Python language
[23] and used for experiments in this study.

• TopLeaders algorithm gradually associates nodes to the nearest leaders and locally reelects
new leaders during each iteration [4]. The authors provide an executable jar file, written in
java [24].

• SCP [5]. This algorithm’s source code is written in C++ and Python [25], however, we used
Python implementation for our analysis.

• MB-DSGE [2]. The source code of this algorithm is implemented in C++ with the makefile
which is available at [26]. In this implementation, the author used an open source C++ linear
algebra library called Eigen [27].

4.2 Datasets

We use four widely used real-world network datasets, i.e. communication, collaboration, and road
network.

• Strike (the communication network of employees in a sawmill): It has 24 vertices (employ-
ees), 38 edges (discussed the strike in some minimum frequency), no arcs, no loops, no line
values [4].

• HEP-PH (High Energy Physics - Phenomenology): This collaboration network is from the
e-print arXiv and covers scientific collaborations between authors papers submitted to High
Energy Physics - Phenomenology category. If an author i co-authored a paper with another
author j, the graph contains a undirected edge from vertex i to vertex j. If the paper is co-
authored by k authors, this generates a completely connected (sub)graph of k vertices. It
contains 12008 vertices and 118521 edges [28].

190



(JESC) The Journal of Engineering Science and Computing, Issue I, Volume I, April, 2019

Mike

John

Ike

Frank

Karl

Gill

Hal

Bob

Lanny

Ozzie

Russ

Wendle

Utrecht
Paul

Quint

Sam

Xavier

Ted

Norm

Alejandro
Vern

Domingo

Eduardo

Carlos

Community 1

Community 2

Community 3

Clustering Coefficient= 0.442
Average No. of Neighbors = 3.167
Network Density= 0.138
 Network Centralization = 0.182

Overall Network: 

Figure 1: Strike network with communities as a ground truth.

• Enron (email network) Enron email communication network [29] covers all the email com-
munication within a dataset of around half million emails. This data was originally made
public, and posted to the web, by the Federal Energy Regulatory Commission during its in-
vestigation. Nodes of the network are email addresses and if an address i sent at least one
email to address j, the graph contains an undirected edge from i to j.

• roadNet-PA (road network) This is a road network of Pennsylvania [30]. Intersections and
endpoints are represented by nodes, and the roads connecting these intersections or endpoints
are represented by undirected edges.

We analyze the aforementioned datasets to highlight the diversity of these networks. It helps
us to anticipate the nature of results with given knowledge about original networks. The Strike
network is visualized in Figure 1 with communities as a ground truth. We also computed the
overall network properties for understanding, e.g. cluster coefficient is 0.44 that shows tendency
towards better communities. We have shown the degree distribution of all datasets in Figure 2
to analyze their structural aspects. The road network has limited variations for vertex degree and
distribution is somehow different from communication and collaboration networks.

The neighborhood connectivity is critical for graph processing and have more tendency to
discover communities. Social networks usually have high neighborhood connectivity that may
produce good quality clusters. On the other hand, relatively sparse graphs have lower connectivity
among neighbors of vertices, which may produce poor quality clusters due to low edge density.
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Figure 2: Degree distribution of collaboration, communication, and road networks.

(a) (b)

Figure 3: Graph neighborhood connectivity for (a) collaboration and (b) email networks. The num-
ber of neighbors are plotted on x-axis and y-axis shows the average connectivity among neighbors.

We plotted the neighborhood connectivity with respect to number of neighbors for collaboration
(hep-ph) and communication (Enron) networks in Figure 3. We observed a considerable difference
for neighborhood connectivity between these two networks, e.g. when we consider more than 100
neighbors then the connectivity is higher for collaboration network compared to email network. It
is strongly related to the size of resultant communities.

4.3 Evaluation criteria

We evaluate algorithms in terms of effectiveness, accuracy and outliers. For effectiveness, we use
scoring functions, defined in Section 4.4, based on internal connectivity (internal density, average
degree), external connectivity (cut ratio), and metrics that combine internal and external connec-
tivity (conductance, normalized cut). The intuition behind conductance is that a community is a set
of nodes strongly connected internally than externally and other metrics following similar intuition
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are also popular in research community [12]. For accuracy we chose Jaccard Index that is a widely
used similarity measure. It is more sensitive to overcome the small variance of the cross common
fraction, i.e. when nodes from several different communities in one result join together as a single
community in another result [7].

4.4 Community Scoring Functions

The basic intuition for all scoring functions is that communities are sets of nodes with many con-
nections between the members and few connections from the members to the rest of the network.
Given a set of nodes S, it is considered a function f (S) that characterizes how community-like is
the connectivity of nodes in S. Let G(V,E) be an un-directed graph with n = |V | nodes and m = |E|
edges. Let S be the set of nodes, where ns is the number of nodes in S, ns = |S|; ms the number
of edges in S, ms = |(u,v) ∈ E : u ∈ S,v ∈ S|; and cs, the number of edges on the boundary of S,
cs = |(u,v) ∈ E : u ∈ S,v /∈ S|; and d(u) is the degree of node u.

• Conductance, f (S) = cs
2ms+cs

. It measures the fraction of total edge volume that points out-
side the cluster. A good community should have high cohesiveness (high internal conduc-
tance) as it should require deleting many edges before the community would be internally
split into disconnected components. Conductance captures a notion of ”surface area-to-
volume” and thus it is widely-used to capture quantitatively the gestalt notion of a good
network community as a set of nodes that has better internal- than external-connectivity
[31].

• Internal density, f (S) = ms
ns(ns−1)/2 , is the internal edge density of the node set S [18].

• Average degree, f (S) = 2ms
ns

, is the average internal degree of the members of S [18].

• Cut ratio, f (S) = cs
ns(n−ns)

, is the fraction of existing edges (out of all possible edges) leaving
the cluster [32].

• Normalized cut, f (S) = cs
2ms+cs

+ cs
2(m−ms)+cs

[31].

• Jaccard Index is a widely used similarity measure. It can be defined as Ps
Ps+Ps1+Ps2

where Ps

stands for the number of node pairs that are respectively classified into the same community
in both results, Ps1 stands for the number of node pairs appearing in the same community in
the algorithm-produced results, but in different communities based on the ground truth, and
Ps2 vice versa [32].
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Figure 4: Analyzing the effectiveness of strike and hep-ph network communities respectively (a,
b) average degree, (c, d) conductance, and (e, f) cut-ratio.
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Figure 5: Analyzing the effectiveness, accuracy, and outlier scores for community detection ap-
proaches on strike network in terms of (a) internal density, (b) jaccard index, (c) normalized cut,
and (d) outliers.

4.5 Discussion

The overall discussion in this section is carried out from two aspects: 1) analyzing different evalua-
tion measures using same dataset, and 2) evaluating the clustering quality on datasets with varying
properties.

We analyzed the effectiveness of community detection methods on small-scale and medium-
scale real life networks, i.e. Strike, Hep-ph, as shown in Figure 4 and Figure 5 respectively.
The quality of communities is directly proportional to internal density and average degree values,
i.e. good communities have higher values for these internal connectivity measures. In reference
to existing study [13], the LPA approach consistently outperforms other approaches through our
experiments on Strike dataset, as depicted in Figure 4. Similarly, MB-DSGE approach did not
produce good quality clusters as claimed in the reference paper [13]. The only exception we ob-
served for LPA is on Hep-ph dataset for average degree, where it has produced poor quality results
compared with other methods, as shown in Figure 4(a) and Figure 4(b).In our understanding, as
the connectivity among neighboring nodes is less in Hep-ph dataset compared with strike dataset,
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Figure 6: Analyzing the effectiveness of community detection approaches on Email and road-pa
network in terms of internal density, average degree, conductance, normalized cut, and cut ratio.

therefore, the same labels are not propagated to majority of the nodes. In other words, very few
nodes collected same labels to be grouped together.

It is also important to note, in Figure 4, that very few evaluation measures (community scoring
function) may mislead our analysis. For instance, clique percolation approach shows community
structures with increased average degree of the nodes but conductance and cut-ratio reveal different
story. The reason is that for small size cliques it may result in good quality communities internally
but when we analyze how good the community structure is externally then may be it is not. In
other words, actual communities may not form clique structures, which is evident in Figure 1 with
actual communities as ground truth, and therefore this kind of conclusion can not be drawn from
such inadequate analysis. We can conclude that average degree scoring function may not be a good
choice in comparison to conductance and cut-ratio.

The strike and hep-ph datasets differ in size as well as in properties but not that different as
road-network, however, we observe strange behavior for LPA, SCP and MS-DSGE algorithms.
In Figure 4(e), the communities generated through LPA and SCP have high cut-ratio compared
with MS-DSGE. But in Figure 4(f), the effect is rather opposite for LPA and SCP. The community
structure is already presented for Strike dataset and we can understand that due to better underlying
community structures in the data, both LPA and SCP did not performed well. In other words,
external links to other communities are too many that is why the resultant communities score is
high in terms of cut-ratio. This is not the case with MS-DSGE as it find the dense subgraphs
out of sparse graph. Is it the case with hep-ph dataset? In order to understand that we need
to carefully look at the Figure 3(a) where we plotted the number of neighbors and neighborhood
connectivity. It clearly tells us that number of neighbors and the average neighborhood connectivity
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are complementary to each other. Therefore, LPA and SCP could perfom well, i.e. produced
communities with low cut-ratio.

The higher conductance, normalized cut (internal and external connectivity), and cut ratio (ex-
ternal connectivity), the worse detected communities are. In other words, these measures are
indirectly proportional to the quality of results. LPA shows good results, SCP is medium and MB-
DSGE is bad on larger dataset, i.e. Hep-ph. The MB-DSGE algorithm is a method for identifying
a set of dense subgraphs of a given sparse graph [2]. Therefore, it has shown different results for
these two datasets in Figure 4, i.e. good results for Strike and relatively poor on Hep-ph dataset.

The accuracy of communities is presented in Figure 5(b) where ground-truth is available in
advance. In this case, LPA algorithm has lower value for average Jaccard Index that is not same
as in the base paper. However, other algorithms have shown the similar performance. Most likely
these results deduced from the fact that the Strike dataset is relatively sparse and does not have
outliers.

The results quality in terms of outliers is also evaluated and shown in the Figure 5(d). The
behavior of each algorithm under consideration is consistent with the claims in literature. MB-
DSGE approach has produced the most outliers due to its natural instinct towards identifying the
set of dense subgraphs on a given sparse graph. The outlier score for SCP method is relatively
lower than MB-DSGE.

We observed the effectiveness of LPA, SCP, and MB-DSGE algorithms on social and road
networks, i.e. Enron and roadpa. Our objective is to investigate the variation in results towards
diversified properties of these networks. We plotted the internal and external connectivity measures
in Figure 6. The internal density and average degree for email (Enron) communities is higher than
road (roadpa) communities and it is consistent for all three community detection methods. Since,
road network is much sparse then email, therefore, they produced sparse communities with low
average degree and density values. For other measures, including conductance, normalized cut,
and cut ratio, LPA has outperformed SCP and MB-DSGE methods. The SCP method achieved
higher score for internal density and average degree on both datasets compared with LPA, which
is non-trivial. However, the accuracy aspect is compromised for SCP. There is a trade-off between
effectiveness and accuracy when it comes to SCP method.

It is interesting to see that LPA, SCP and MB-DSGE methods detected better communities in
terms of cut-ratio on road network in Figure 6, where the road network is comparatively sparse
than Enron email network. It make sense because in road network the detected communities have
less number of edges going out of the communities due to sparseness, which is not the case with
Enron email network. For other measures like conductance and normalize-cut, we can see the
similar behavior of the algorithms on read network where communities have relatively lower values
compared with the Enron network. There is an exception for LPA algorithm when it comes to road
network where it has produced relatively poor communities in reference to email network. The
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reason for such behavior lies in label propagation algorithm where strongly connected nodes end
up receiving same labels and resulted in the same community. In other words, it does not include
the nodes in the same community having links to nodes of other communities.

5 Conclusion and Future Directions

This study provided an experimental evaluation of a set of representative and well-known com-
munity detection algorithms on structurally different datasets with varying properties, i.e. density,
sparsity, and neighborhood connectivity. We evaluated results of these algorithms for effectiveness,
accuracy, and outliers. The extensive evaluation of the resultant communities in terms of unique
measures suggested the superiority of LPA method over others in social networks. However, SCP
method achieved better internal density and average degree compared to LPA, while with a slight
compromise on accuracy. The impact of network properties is proportionally reflected in results,
but the behavior of community detection methods persisted.

It is non-trivial to foresee the impact of community detection approaches over weighed and
directed graphs. The personal traits of entities in a network, e.g. attributes associated with the
vertices, further complicates this process and requires a systematic analysis for better understand-
ing. The analysis problem becomes even more complex when we encounter non-homogeneous
networks with varying types of vertices, i.e. heterogeneous networks.
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percolation,” Physical Review E, vol. 78, no. 2, p. 026109, 2008.

[6] I. X. Leung, P. Hui, P. Lio, and J. Crowcroft, “Towards real-time community detection in
large networks,” Physical Review E, vol. 79, no. 6, p. 066107, 2009.

[7] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to detect community
structures in large-scale networks,” Physical Review E, vol. 76, no. 3, p. 036106, 2007.

[8] F. Zhao and A. K. Tung, “Large scale cohesive subgraphs discovery for social network visual
analysis,” Proceedings of the VLDB Endowment, vol. 6, no. 2, pp. 85–96, 2012.

[9] J. Yang and J. Leskovec, “Defining and evaluating network communities based on ground-
truth,” Knowledge and Information Systems, vol. 42, no. 1, pp. 181–213, 2015.

[10] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community detection in networks: The
state-of-the-art and comparative study,” Acm computing surveys (csur), vol. 45, no. 4, p. 43,
2013.

[11] S. Harenberg, G. Bello, L. Gjeltema, S. Ranshous, J. Harlalka, R. Seay, K. Padmanabhan,
and N. Samatova, “Community detection in large-scale networks: a survey and empirical
evaluation,” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 6, no. 6, pp. 426–
439, 2014.

[12] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison of algorithms for network
community detection,” in Proceedings of the 19th international conference on World wide

web. ACM, 2010, pp. 631–640.

[13] M. Wang, C. Wang, J. X. Yu, and J. Zhang, “Community detection in social networks: An
in-depth benchmarking study with a procedure-oriented framework,” PVLDB, vol. 8, no. 10,
pp. 998–1009, 2015.

[14] G. Misra, J. M. Such, and H. Balogun, “Non-sharing communities? an empirical study of
community detection for access control decisions,” in 2016 IEEE/ACM International Con-

ference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 2016, pp.
49–56.

[15] N. Garg and R. Rani, “A comparative study of community detection algorithms using graphs
and r,” in 2017 International Conference on Computing, Communication and Automation

(ICCCA). IEEE, 2017, pp. 273–278.

[16] Z. Zhao, S. Zheng, C. Li, J. Sun, L. Chang, and F. Chiclana, “A comparative study on com-
munity detection methods in complex networks,” Journal of Intelligent & Fuzzy Systems, no.
Preprint, pp. 1–10, 2018.

[17] K. Chandusha, S. R. Chintalapudi, and M. H. M. Krishna Prasad, “An empirical study on

199



(JESC) The Journal of Engineering Science and Computing, Issue I, Volume I, April, 2019

community detection algorithms,” in Smart Intelligent Computing and Applications, S. C.
Satapathy, V. Bhateja, and S. Das, Eds. Singapore: Springer Singapore, 2019, pp. 35–44.

[18] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, “Defining and identifying
communities in networks,” Proceedings of the National Academy of Sciences of the United

States of America, vol. 101, no. 9, pp. 2658–2663, 2004.
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