
The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

168

Investigating Artificial Intelligence Systems Through the Use of

Constrained Deep Neural Networks

Mohammed Yahya Alghamdi a, Mohammed M.Abbassy b, Ayman Abo-Alnadr c, Emad Elabd d,e,

Sayed Saberf, Waleed Ead b,g*

aDepartment of Computer Science, Faculty of Computing & Information, Al-Baha University, Al-Baha, Saudi

Arabia.

bFaculty of computers and artificial intelligence, Beni-Suef university, Egypt

cInformation system Dept., Higher Institute of management and information technology, Kafr el Shekh,

Egypt

dFaculty of Computers and Information, Menoufia University, Shebin El Kom, Egypt

eDepartment of Computer, Deanship of Educational Services, Qassim University, Buraydah, Saudi Arabia.

fDepartment of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Egypt.

gEgypt-Japan university of science and Technology (E-JUST), Alexandria, Egypt

Abstract: Deep neural networks have significantly advanced the field of image and text

categorization, pushing the boundaries of machine learning. However, designing efficient neural

network architectures remains a challenge, often requiring complex and costly methods to find

optimal configurations. This paper introduces a novel approach to architectural design through a

restricted search method, focusing on creating networks that are both cost-effective and fast,

suitable for AI systems with strict memory and time limitations, particularly in near-sensor

applications. Neural networks now surpass traditional machine learning techniques in various

computational perception tasks. Despite their success, deploying these advanced models on mobile

and IoT devices is computationally challenging, leading to reliance on cloud-based solutions. Such

dependence increases communication costs and potential system inoperability during connectivity

outages. Our method addresses these issues, offering a viable solution for efficient, local

deployment of advanced neural networks in resource-constrained environments. We propose a

conceptual framework that leverages a Deep neural networks (DNN) approach to decide whether

data should be processed locally or sent to the cloud, optimizing both computational resources and

performance. Our findings suggest that this method requires sending only 52% of test data to the

server, achieving an overall system accuracy of 48%. This significantly enhances the efficiency of

client-server models and supports the implementation of AI capabilities on local devices.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

169

By employing a strategic search for computational models based on content extraction, we

improve the efficiency and speed of AI operations. Our experiments demonstrate the practicality

and effectiveness of this approach, which has also been tested on actual hardware, offering a

promising direction for enhancing AI applications in resource-constrained environments.

Keywords: Efficiency, Query Issues, Branch Scanning, Metrics, Retrieval Phase, Perception,

Networks, Sensor Fusion, Developing Artificial Intelligence, Simulation, Techniques,

Convolutional Networks Layout

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

170

 العميقة العصبية الشبكات استخدام خلال من الاصطناعي الذكاء أنظمة دراسة

 المقيدة

 كبير، بشكل والنصوص الصور تصنيف مجال تطوير في العميقة العصبية الشبكات ساهمت لقد الملخص:

 تحديًا، يمثل الفعالة العصبية الشبكات بنيات تصميم يزال لا ذلك، ومع. الأمام إلى الآلي التعلم حدود دفع مما

 للتصميم جديدا نهجا الورقة هذه تقدم. المثالية التكوينات على للعثور ومكلفة معقدة أساليب يتطلب ما وغالبًا

 وسريعة، التكلفة حيث من فعالة شبكات إنشاء على التركيز مع مقيدة، بحث طريقة خلال من المعماري

 أجهزة تطبيقات في وخاصة والوقت، الذاكرة على الصارمة القيود ذات الاصطناعي الذكاء لأنظمة ومناسبة

 الحسابي الإدراك مهام في التقليدية الآلي التعلم تقنيات على الآن العصبية الشبكات تتفوق. القريبة الاستشعار

 إنترنت وأجهزة المحمولة الأجهزة على المتقدمة النماذج هذه نشر فإن نجاحها، من الرغم وعلى . المختلفة

 إلى الاعتماد هذا يؤدي . السحابة إلى المستندة الحلول على الاعتماد إلى يؤدي مما حسابياً، تحدياً يمثل الأشياء

 وتقدم المشكلات، هذه طريقتنا تعالج . الاتصال انقطاع أثناء النظام تشغيل عدم واحتمال الاتصال تكاليف زيادة

 إطارًا نقترح. الموارد المحدودة البيئات في المتقدمة العصبية للشبكات الفعال المحلي للنشر للتطبيق قابلاً حلاً

 أو محليًا البيانات معالجة يجب كان إذا ما لتحديد (DNN) العميقة العصبية الشبكات نهج يعزز مفاهيميًا

 أن إلى إليها توصلنا التي النتائج تشير . والأداء الحسابية الموارد تحسين إلى يؤدي مما السحابة، إلى إرسالها

 تبلغ للنظام إجمالية دقة يحقق مما الخادم، إلى الاختبار بيانات من فقط% 52 إرسال تتطلب الطريقة هذه

 الأجهزة على الاصطناعي الذكاء قدرات تنفيذ ويدعم العميل خادم نماذج كفاءة كبير بشكل يعزز وهذا%. 48

 نقوم المحتوى، استخراج على القائمة الحسابية النماذج عن الاستراتيجي البحث توظيف خلال من . المحلية

 وفعاليته، النهج لهذا العملي التطبيق مدى تجاربنا وتظُهر. الاصطناعي الذكاء عمليات وسرعة كفاءة بتحسين

 في الاصطناعي الذكاء تطبيقات لتعزيز واعدًا اتجاهًا يوفر مما فعلية، أجهزة على أيضًا اختباره تم والذي

 الموارد. المحدودة البيئات

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

171

1. Introduction

The rapid development of artificial intelligence (AI) has led to an increase in complex tasks that

require efficient and effective splitting. Premature exiting, an early termination of certain

operations, can be a vital strategy for optimizing performance in real-time applications. This paper

delves into using neural network search techniques to optimize this process. Artificial Intelligence

(AI) has experienced monumental growth over the past few decades, evolving from rudimentary

algorithms to sophisticated systems that can perform tasks previously believed to be exclusive to

human intelligence. One area of AI that has been gaining traction is the ability to effectively split

tasks, a crucial aspect for improving efficiency, especially in large-scale applications. This process,

known as AI splitting, allows systems to divide complex tasks into more manageable sub-tasks.

But with the rise of real-time applications, there has been a pressing need to ensure not just

effective splitting, but also timely response. Enter the concept of premature exiting—a strategy

that allows an AI system to terminate certain operations early, ensuring faster results, albeit at the

potential cost of some accuracy, see [1], [2], [3], [4], [5].

Premature exiting is rooted in the understanding that in many scenarios, waiting for a complete

and thorough computation might be less optimal than obtaining a quicker, albeit slightly less

accurate result. For instance, in real-time object detection, it might be more beneficial to identify

a potential threat quickly rather than wait for a thorough analysis that confirms the nature of every

object in a scene. The challenge, however, lies in determining the optimal point at which to exit

prematurely without compromising the integrity of the result excessively. This is where neural

network search techniques come into play. Neural networks, inspired by the human brain's

architecture, have been at the forefront of many recent AI advancements. These networks consist

of interconnected nodes (neurons) that process and transmit information. The depth and

complexity of these networks can be vast, allowing them to model intricate patterns and

relationships in data. But this depth is a double-edged sword: while it provides the network with

its powerful modeling capability, it also means that processing can be lengthy, especially in deeper

architectures, see [6], [7], [8], [9].

Neural network search techniques aim to find the most efficient pathways or configurations within

these expansive networks. By employing these techniques, one can optimize a network to

recognize when it has gathered "enough" information to decide, allowing it to exit prematurely

and deliver a result. Essentially, instead of traversing the entire depth of the network, the system

can determine an exit point where the prediction's confidence surpasses a predetermined threshold.

This is analogous to a student answering a question once they're reasonably sure of the answer,

rather than pondering all possible solutions [10], [11], [12], [13], [14].

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

172

But how does one determine these exit points? The answer lies in the training process. When

training a neural network, we typically feed it vast amounts of data, adjusting its internal

parameters to minimize the difference between its predictions and the actual outcomes. By

integrating premature exiting into this training paradigm, we can simultaneously optimize

accuracy and speed. The neural network is trained not only to recognize patterns in data but also

to gauge its own confidence in its predictions. When this confidence reaches a level deemed

satisfactory, the network can opt for a premature exit, thereby speeding up the response time [15],

[16], [17], [18]. It's worth noting that the balance between speed and accuracy is a delicate one. If

a network exists too early, it risks producing results that are too inaccurate to be useful. Conversely,

if it waits too long, it might negate the benefits of premature exiting. This balance becomes even

more critical in applications where stakes are high, such as medical diagnoses or autonomous

vehicle navigation. Also, the integration of neural network search techniques into AI splitting,

combined with the strategy of premature exiting, holds significant promise for the future of real-

time AI applications. By allowing systems to intelligently determine when they have enough

information to make a decision, we can achieve a harmonious blend of speed and accuracy. As the

demand for real-time AI continues to grow, strategies like these will be indispensable in ensuring

that our systems are both swift and reliable. As with all technological advancements, continuous

research and refinement are essential, but the foundations laid by these techniques are undeniably

robust and promising for the future landscape of AI.

2. Research Background

In the realm of artificial intelligence (AI), the ability to efficiently split tasks is paramount. This

process, often referred to as task decomposition, involves breaking down complex problems into

smaller, more manageable sub-tasks [1], [2], [4], [5]. Such division not only makes problem-

solving more tractable but also allows for parallel processing, speeding up computations. For

instance, in the field of robotics, a task like "cleaning a room" might be split into sub-tasks like

"picking up objects," "vacuuming the floor," and "dusting surfaces" ([12], [17]). Each sub-task can

then be tackled using specialized algorithms or models. Similarly, in natural language processing,

understanding a paragraph might involve tasks such as sentence segmentation, word tokenization,

syntactic parsing, and semantic analysis [2].

By splitting these tasks, AI researchers can focus on optimizing individual components, which

collectively leads to improved overall performance. Furthermore, task splitting is pivotal in

collaborative AI systems, where multiple agents work together [7]. Each agent can be assigned a

specific sub-task, fostering cooperation and efficiency. In essence, splitting tasks in AI not only

simplifies complex challenges but also harnesses the power of specialization and collaboration,

pushing the boundaries of what AI systems can achieve.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

173

Premature exiting, in the context of deep learning and neural networks, refers to the practice of

allowing a model to make early predictions before processing through all its layers. Typically,

deep models, especially those like deep convolutional neural networks, process input data through

multiple layers to derive a final prediction. However, with premature exiting, if the model is

confident enough in its prediction at an earlier stage, it can bypass the remaining layers and provide

an immediate output ([1], [10], [11]). The primary benefit of this approach is efficiency [12]. As

deep learning models have grown deeper and more complex, their computational demands have

increased exponentially. By allowing for early exits, the computational cost can be significantly

reduced, especially when the model is dealing with simpler inputs that don't necessitate full

processing. This results in faster predictions and saves valuable resources, making it particularly

beneficial for real-time applications or devices with limited computational power. Moreover,

premature exiting can also aid in preventing overfitting [13]. By not always relying on the deeper

layers, which are more prone to fitting noise in the data, models can sometimes generalize better

to unseen data. However, implementing premature exiting comes with its set of challenges [14].

The first is determining the criteria for an early exit. The model must be equipped with a

mechanism to gauge its confidence in a prediction. This often involves auxiliary classifiers placed

at various stages of the network, adding to the model's complexity. Furthermore, training such a

model requires careful consideration. Traditional training methods might not be directly

applicable, and new strategies, such as staged training or specialized loss functions, might be

necessary. Another challenge is ensuring that the premature exit does not compromise the accuracy

of the model. While the idea is to exit early for simpler inputs, there is always a risk that the model

might make an incorrect early prediction, especially in borderline cases. Balancing speed and

accuracy is crucial ([15], [16], [18]). Finally, premature exiting offers a promising avenue to

enhance the efficiency of deep learning models, making them more adaptable to diverse

applications and constraints. While the benefits in terms of speed and potential generalization are

apparent, the challenges in training and implementation necessitate thorough research and careful

design. As AI continues to integrate more deeply into real-world applications, strategies like

premature exiting will play a pivotal role in bridging the gap between computational demand and

available resources.

The quest to optimize neural network architectures has been a central theme in the evolution of

deep learning. Historically, the design of these networks was largely based on human intuition,

experimentation, and manual tweaking ([6], [7], [8], [9]). Researchers would adjust layers, nodes,

and other hyperparameters based on heuristic insights, often informed by previous successes and

failures. Pioneering architectures like LeNet, AlexNet, and VGG were products of this manual

design process. However, as the complexities of tasks and datasets grew, so did the architectures,

making manual exploration increasingly infeasible.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

174

Enter the era of automated neural architecture search (NAS) ([1], [2], [4], [5], [19]). NAS

algorithms aim to automatically discover optimal or near-optimal network architectures [20],

alleviating the need for human-led trial and error. The seminal work in this space used

reinforcement learning, where a controller network proposed architectures and was rewarded

based on the performance of the resultant networks [21]. While effective, early NAS methods were

computationally expensive, often requiring thousands of GPU hours.

Recent advancements have addressed these inefficiencies. One significant leap is weight-sharing

methods, where different architectures share weights, enabling a faster evaluation of multiple

architectures without training each one from scratch ([10], [11], [12], [13], [14], [22]). Techniques

like DARTS represent this category, allowing for more efficient search processes. Another

advancement is the use of evolutionary algorithms, inspired by natural selection, to evolve optimal

network designs [23]. Furthermore, the rise of transfer learning, where pretrained models on large

datasets are fine-tuned for specific tasks, has also influenced NAS, leading to methods that search

for optimal fine-tuning strategies ([10], [24]). In reflection, the journey from manual design to

automated neural network search encapsulates the broader evolution of AI: from relying heavily

on human expertise to developing self-optimizing systems. As the field continues to progress, the

boundary between designer and design is poised to blur further, with AI systems playing an

increasingly active role in their own evolution.

While existing NAS methods have achieved remarkable results, they often focus on maximizing

accuracy without sufficient consideration of deployment constraints on edge devices. Our

approach distinguishes itself by explicitly incorporating a restricted search method aimed at

optimizing both cost-effectiveness and speed, making it highly suitable for near-sensor

applications with stringent memory and time limitations. In comparison to methods like

BranchyNet and SACT, which introduce early-exit strategies to improve inference speed, our

method integrates these strategies within the NAS framework to ensure that the resulting

architectures are inherently designed for efficient early exits. This allows for a more seamless and

effective balance between performance and computational efficiency.

3. Methodology

3.1. Neural Network Architecture: Details of the neural architecture employed.

The neural architecture employed in this context utilizes a deep convolutional neural network

(CNN) designed for image classification tasks. This network architecture is specifically tailored to

process and analyze visual data, making it suitable for a wide range of computer vision

applications. CNN consists of multiple layers, including convolutional layers, pooling layers, and

fully connected layers. The convolutional layers are responsible for learning spatial features from

the input image through a series of convolution operations, effectively detecting patterns and

edges. These layers are typically followed by pooling layers, which reduce the spatial dimensions

of the feature maps while retaining essential information. This process is repeated multiple times

to extract increasingly abstract and complex features from the image.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

175

Figure 1. Information Flow through the layers of the neural network

The extracted features are then passed through one or more fully connected layers, which act as a

classifier to make predictions. These layers learn to associate the extracted features with specific

classes or categories, enabling the network to identify and classify objects within the input image.

Tree diagram for artificial intelligence is given by figure 1. In this diagram, you can see the flow

of information through the layers of the neural network, illustrating how the input image is

processed to make predictions about its content. This neural architecture, with its convolutional

layers, pooling layers, and fully connected layers, forms the foundation for many successful image

recognition and classification tasks in the field of deep learning.

3.2. Training Procedure: Information on hyperparameters, training iterations, and

evaluation metrics.

The training procedure of a machine learning model is a critical aspect of its development, as it

directly influences the model's performance and capabilities. It involves several key components,

including the selection of hyperparameters, determining the number of training iterations, and

establishing evaluation metrics to assess the model's performance. Hyperparameters are

parameters that are set prior to the training process and cannot be learned from the data. They

significantly impact the model's behavior and generalization ability. Examples of hyperparameters

include learning rates, batch sizes, and the architecture of neural networks. Choosing appropriate

hyperparameters is often done through experimentation and tuning, as finding the right

combination can significantly impact the model's performance. Training iterations refer to the

number of times the model's weights are updated using the training data. More iterations can lead

to better convergence, but it can also risk overfitting the model to the training data. Balancing this

trade-off is crucial. Additionally, techniques like early stopping can be employed to halt training

when performance on a validation set plateaus, preventing overfitting.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

176

Architecture diagram for restrictive deep neural network is given by Figure 2. A restrictive deep

neural network architecture is designed to be efficient in terms of computational resources, making

it suitable for deployment on devices with limited memory and processing power, such as mobile

and IoT devices.

Figure 2. Architecture diagram for restrictive deep neural network

Evaluation metrics are used to quantitatively assess how well the model performs on a specific

task. The choice of metrics depends on the problem at hand. For classification tasks, metrics like

accuracy, precision, recall, and F1-score are commonly used. In regression tasks, metrics like mean

squared error (MSE) or mean absolute error (MAE) are employed. The choice of metrics should

align with the project's objectives and provide a comprehensive understanding of the model's

performance. Furthermore, it's important to establish a robust evaluation protocol that includes

cross-validation, or a separate validation set to ensure the model's performance generalizes well to

unseen data. So, the training procedure of a machine learning model involves making informed

decisions about hyperparameters, determining the appropriate number of training iterations, and

defining relevant evaluation metrics. These components collectively shape the model's

effectiveness and its ability to solve real-world problems. A well-designed training procedure is

essential for building models that can make accurate predictions and drive meaningful insights

from data. As depicted in the following Algorithm 1.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

177

__

Algorithm 1

__

1. Start: Begin the algorithm.

2. Input Constraints: Define the input constraints, including memory limits, processing time, and accuracy

requirements.

3. Initialize Search Space: Initialize the search space with a set of possible network architectures.

4. Evaluate Initial Population: Evaluate the initial population of architectures against the defined

constraints using a performance metric (e.g., accuracy).

5. Selection: Select architectures that best meet the constraints for further exploration.

6. Generate Variants: For each selected architecture, generate variants by altering layers, nodes, or

connections.

7. Evaluate Variants: Evaluate the new variants against the constraints.

8. Check Improvement: Check if there is an improvement in the performance metric within the

constraints.

o If Yes: Update the selection with better-performing architectures.

o If No: Proceed to termination criteria.

9. Termination Criteria: Determine if the search has met the termination criteria (e.g., maximum iterations

or no further improvement).

o If Not Met: Go back to step 5 (Selection).

o If Met: Proceed to the final step.

10. Output Optimal Architecture: Output the architecture(s) that best meet the constraints and

performance metric.

11. End: End of the algorithm.

3.3. Objectives and Motivation

The primary objective of this research is to address the significant challenges associated with the

design and implementation of artificial intelligence (AI) systems, particularly those employing

deep neural networks (DNNs), under stringent resource constraints. These challenges include high

computational demands, extensive memory requirements, and the need for rapid processing

speeds, which are critical for AI applications in near-sensor environments and on edge devices.

The motivation behind this work is twofold:

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

178

1. Efficiency in Design: Despite the proven capabilities of DNNs in various domains, such as

image and text categorization, the design of these networks remains a labor-intensive and complex

task. Traditional methods for finding optimal network architectures are often prohibitively

expensive and time-consuming. There is a pressing need for a streamlined approach that can

discover efficient architecture more rapidly and at a lower cost.

2. Operational Constraints: Many AI applications are intended for deployment in environments

with limited computational resources, such as mobile and Internet of Things (IoT) devices. These

environments necessitate models that not only perform well but also adhere to strict memory and

processing time limitations. Furthermore, reliance on cloud-based processing introduces issues

related to connectivity dependence, data privacy, and operational costs.

To address these challenges, this work proposes a novel, constrained architectural search

methodology that aims to identify efficient DNN architectures that can operate within the specific

limitations of near-sensor AI systems. By doing so, this research seeks to broaden the applicability

of AI technologies, enabling their deployment in a wider range of settings, including those where

computational resources are scarce. The goal is to enhance the performance and accessibility of

AI systems, making them more adaptable to various operational constraints while maintaining high

levels of accuracy and efficiency. Our methodology focuses on designing a restricted neural

architecture search framework that optimizes for both cost-effectiveness and speed, making it

suitable for deployment on resource-constrained devices such as mobile phones and IoT devices.

To further enhance computational efficiency, we incorporate early-exit strategies into the NAS

framework. These strategies allow the network to make intermediate predictions, which can

significantly reduce inference time and resource usage for simpler inputs. By incorporating early-

exit strategies within a restricted NAS framework, our methodology addresses the key challenges

of deploying efficient neural networks on resource-constrained devices as shown in algorithm 1.

The proposed approach not only improves computational efficiency but also ensures high

performance, making it highly suitable for near-sensor AI applications.

4. Proposed Approach

In our study on premature exiting in machine learning models, we devised an experimental set

comprising various datasets and model architectures to assess the efficacy of our tailored objective

function. By integrating validation metrics and convergence criteria into the objective function,

we aimed to determine the optimal point for halting the training process. Our experimental setup

involved dividing datasets into training, validation, and test segments, with models subjected to

training under controlled conditions. Performance metrics such as accuracy, precision, and recall

were monitored across epochs.

To validate the performance and efficiency of premature exiting, we implemented a systematic

comparison against traditional training methods. This involved tracking the computational

resources consumed and the time taken to reach peak performance.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

179

The results were obtained through rigorous testing, where each model was trained multiple times

to ensure consistency and reliability of the outcomes. Our analysis focused on identifying patterns

of performance plateauing and degradation, using these insights to refine the premature exiting

criteria. The innovative aspect of our approach lies in the dynamic adjustment of the training

process based on real-time performance evaluation, ensuring models do not overfit or waste

computational resources. This methodology has shown promise in significantly reducing training

times while maintaining or even enhancing model performance, marking a substantial

improvement over traditional extended training method. Our findings underscore the importance

of a well-crafted objective function in optimizing machine learning workflows, especially in

resource-constrained scenarios.

4.1. Neural Search Strategy: Explanation of the search strategy used to explore possible split

points.

In the realm of neural networks and machine learning, the neural search strategy refers to a

systematic approach for exploring and identifying optimal split points or decision boundaries

within data. This strategy plays a pivotal role in various applications such as decision trees,

gradient boosting, and neural network architectures, particularly when dealing with classification

tasks.

The primary objective of a neural search strategy is to efficiently navigate through the feature

space and identify the points at which the model can separate data into different classes or

categories most effectively. To achieve this, it often employs algorithms like gradient descent,

backpropagation, or evolutionary optimization techniques. In decision trees, for example, the

search strategy evaluates different features and their thresholds to split data into subsets that are as

pure as possible in terms of class labels. Gradient boosting algorithms iteratively optimize the

choice of split points to minimize the residual errors. In neural networks, the search strategy

involves adjusting the weights and biases of neurons to minimize the loss function, effectively

learning the optimal decision boundaries.

The choice of a search strategy depends on the problem complexity, dataset size, and

computational resources available. More sophisticated strategies may involve random sampling,

genetic algorithms, or Bayesian optimization to efficiently explore the vast feature space.

Ultimately, an effective neural search strategy is crucial for training accurate models that can

generalize well to unseen data. It enables models to learn intricate patterns and relationships within

the data, leading to improved performance and predictive capabilities across various machine

learning tasks.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

180

The restricted NAS framework operates within a constrained search space to ensure that the

resulting architectures are computationally feasible for edge devices.

The key components of the NAS framework are:

• Search Space Definition: Our search space includes various types of layers (e.g.,

convolutional, pooling, and fully connected layers), with constraints on their size and

complexity to ensure efficiency.

• Search Strategy: We utilize a modified evolutionary algorithm that focuses on optimizing

both accuracy and computational efficiency. The evolutionary process involves selection,

crossover, and mutation operations tailored to our constraints.

• Evaluation Metric: We introduce a composite metric that combines accuracy and

computational cost to guide the search process towards efficient architectures. Algorithm

2 demonstrate such explanation.

4.2. Exit Criteria: Conditions for premature exiting.

Exit criteria in the context of machine learning and optimization refer to the conditions or

thresholds that determine when a specific process, such as training a model or conducting an

experiment, should be prematurely terminated. These criteria are essential for preventing

unnecessary computational expenses and ensuring the efficient allocation of resources. Common

exit criteria include reaching a predefined level of performance (e.g., accuracy or loss), achieving

convergence (i.e., minimal improvement in the objective function), exceeding a time or resource

limit, or detecting signs of overfitting. By establishing clear and appropriate exit criteria,

practitioners can strike a balance between obtaining desirable results and conserving valuable time

and resources.

As shown in algorithm 3 , Early-exit strategies allow the network to make intermediate predictions,

thus reducing inference time and computational load for simpler inputs. We integrate early-exit

branches at various depths of the network, enabling a flexible trade-off between accuracy and

efficiency.

• Design of Early-Exit Branches: Each early-exit branch consists of a few layers (e.g.,

convolutional layers followed by a classifier) designed to provide accurate predictions with

minimal computation.

• Optimization of Early-Exit Criteria: We optimize the criteria for early-exit (e.g.,

confidence thresholds) during the training process to ensure that the network exits early

whenever possible without compromising overall performance.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

181

Algorithm 2: Restricted NAS Framework

1: Initialize the population with random architectures

within the constrained search space

2: for each generation do

3: Evaluate each architecture using the composite

metric (accuracy and computational cost)

4: Select the top-performing architectures based on the

composite metric

5: Apply crossover and mutation to generate new

candidate architectures

6: Incorporate early-exit branches into candidate

architectures

7: Re-evaluate architectures with early-exit branches

using the composite metric

8: Select the final set of architectures for the next

generation

9: end for

10: Return the best-performing architecture

5. Results

Benchmarking is a fundamental practice in the field of artificial intelligence (AI) that involves

comparing a proposed approach against traditional methods to assess its effectiveness and

efficiency. In the context of splitting data effectively with premature exiting using neural network

search, benchmarking plays a pivotal role in evaluating the novelty and performance of the

proposed methodology in comparison to established AI techniques. Traditional methods for

splitting data and implementing premature exiting in AI encompass a range of strategies, including

decision trees, random forests, gradient boosting, and various heuristic approaches. These methods

often rely on handcrafted rules, feature engineering, or statistical techniques to make data

partitioning decisions and halt the training process when necessary. They have been widely used

in machine learning for classification tasks and have proven to be effective in many domains.

Activation function and Forward propagation in a layer is given by (1) and (2).

 𝜎(𝑧) =
1

1+𝑒𝑧
 , (1)

 𝑎[𝑙] = 𝑔[𝑙](𝑧[𝑙]), (2)

where 𝑧[𝑙] = 𝑤[𝑙]𝑎[𝑙−1] + 𝑏[𝑙] and 𝑔[𝑙] is the activation function for layer 1.

Algorithm 3: Early-Exit Branch Optimization

1: Initialize the network with early-exit branches at

predefined depths

2: for each training epoch do

3: for each input sample do

4: Compute intermediate predictions at each earlyexit

branch

5: Evaluate the confidence of each intermediate

prediction

6: If confidence exceeds the threshold, use the

intermediate prediction

7: Else, pass the input to the next layer

8: end for

9: Update the network parameters and confidence

thresholds based on loss and accuracy

10: end for

11: Return the optimized network with early-exit

branches

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

182

We conduct experiments on standard image classification datasets, including CIFAR-10 and

ImageNet, which are widely used benchmarks for evaluating neural network performance. For

hardware configuration, We use an NVIDIA Tesla V100 GPU for training and evaluation, with

32GB of memory. For edge device simulations, we utilize a Raspberry Pi 4 Model B with 4GB

RAM. For the software configuration, the experiments are conducted using PyTorch 1.7 as the

deep learning framework. We implement our NAS framework and early-exit strategies within this

environment.

The proposed approach, on the other hand, involves utilizing neural network-based search

strategies to automatically discover optimal data splitting points and exit criteria. This

methodology leverages the power of deep learning and neural networks to learn intricate patterns

and relationships within the data, adaptively adjusting splitting decisions during training. It seeks

to combine the flexibility and representation learning capabilities of neural networks with the

efficiency of premature exiting, potentially leading to more accurate and efficient models.

Benchmarking these two approaches involves several key aspects:

• Performance Metrics: To assess the effectiveness of both methods, various performance

metrics are considered, such as accuracy, precision, recall, F1-score, and computational

efficiency. These metrics provide a comprehensive view of how well each approach splits

data and makes premature exit decisions.

• Data Diversity: A diverse dataset comprising different types of data, including structured,

unstructured, and real-world data, is used to test the robustness and generalization ability

of the methods. This ensures that the benchmarking results are applicable across various

domains and scenarios.

• Computational Resources: Benchmarking includes evaluating the computational

resources required for both approaches. This involves measuring the training time, memory

usage, and hardware requirements, allowing practitioners to make informed decisions

based on available resources.

• Hyperparameter Tuning: The benchmarking process may also involve hyperparameter

tuning for both methods to ensure that they are operating at their optimal configurations.

This helps to avoid any potential bias in the comparison due to suboptimal parameter

settings.

• Statistical Significance: To draw meaningful conclusions, statistical significance tests are

often applied to assess whether observed differences in performance are statistically

significant or could have occurred by random chance.

• Ultimately, benchmarking serves as a critical step in the evaluation and validation of the

proposed neural network-based approach for splitting data effectively with premature

exiting.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

183

Table-1. Number of layers vs. various metrics

Network

Name

Number of

Layers

Accuracy (%) Training Time

(hrs)

Number of Parameters

(millions)

NetA 5 85 1.5 2

NetB 10 90 2 4

NetC 15 92 3 8

NetD 20 93 4 16

NetE 25 94 5 32

It allows researchers and practitioners to determine whether the new methodology provides a

substantial improvement over traditional AI methods in terms of accuracy, efficiency, and

adaptability to various data types. Additionally, benchmarking can help identify scenarios where

the neural network-based approach excels and where traditional methods may still have their place,

facilitating informed decision-making in AI model development and deployment. Number of

layers with respect to various metrics is given by table 1 and figure 3. It is noticed that while the

number of layers increases it affects the accuracy level to be increased on one hand, but we see ,

it’s costly in the time of training. The Cost function and Cross‐Entropy cost function for

classification is given below:

 𝐼(𝑊, 𝑏) =
1

2𝑚
∑ (𝑦(𝑖) − �̂�)2, (3)

 𝐼(𝑊, 𝑏) = −
1

𝑚
∑ 𝑦(𝑖)

 log (�̂�) + (1 − 𝑦(𝑖)) log (1 − �̂�), (4)

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

184

 Figure-3. Representation of Number of Layers vs. Various Metrics

5.1. Real-world Application: Demonstrating the performance of the proposed method in real-

world scenarios.

Demonstrating the performance of the proposed method for Artificial Intelligence Splitting

Effectively with Premature Exiting Using Neural Network Search in real-world scenarios is crucial

to validate its practical utility and effectiveness across diverse applications. Such real-world

applications showcase the methodology's adaptability and potential impact on addressing practical

challenges in fields where AI plays a pivotal role.

One compelling real-world application of this methodology can be found in the realm of medical

diagnostics, specifically in the domain of disease classification from medical images. In medical

imaging tasks like the detection of lung cancer from CT scans or diabetic retinopathy from retinal

images, the accuracy and efficiency of data splitting and model training are of paramount importance.

Traditional approaches may require expert-designed heuristics to determine how to split data into

training and validation sets and when to halt training, which can be suboptimal and time-consuming.

By applying the proposed method in this context, AI researchers and medical practitioners can

potentially benefit from its ability to autonomously discover optimal data splitting strategies and exit

criteria.

The neural network-based search can adapt to the nuances of medical image data, such as variations

in image quality and patient demographics. Moreover, it can help in identifying the right moment to

stop training, preventing overfitting and reducing computational costs.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

185

The methodology's performance can be evaluated using critical metrics like sensitivity, specificity,

and AUC-ROC, demonstrating its ability to aid in early and accurate disease diagnosis. Another real-

world application lies in autonomous vehicles and their perception systems. Training neural

networks to accurately recognize and interpret visual data from cameras, LiDAR, and radar sensors

is a complex task and given by table 2 and figure 4. It shows the decreasing in validation error rate

while the number in epochs increased. The proposed method can be employed to fine-tune models

for various driving scenarios, including lane detection, object recognition, and pedestrian tracking.

Neural network search can adaptively determine when to exit training, ensuring that the models

achieve a delicate balance between accuracy and computational efficiency. In a safety-critical

domain like autonomous driving, where split-second decisions matter, demonstrating the

effectiveness of the methodology through real-world testing and validation is essential.

Table 2. Datasets trained vs. various metrics.

 Figure 4. Representation of Number of Layers vs. Various Metrics

0

2

4

6

8

10

12

14

0

10

20

30

40

50

60

NetA NetB NetC NetD NetE

Datasets Trained Validation Error (%)

Epochs Required Test Error (%)

Network

Name

Datasets

Trained

Validation

Error (%)

Test Error

(%)

Epochs Required

NetA 10 10 12 10

NetB 20 8 10 15

NetC 30 6 8 20

NetD 40 5 7 25

NetE 50 4 5 30

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

186

Furthermore, in the financial sector, where AI is increasingly utilized for fraud detection, portfolio

optimization, and algorithmic trading, the proposed method can be applied to enhance model

development. Detecting fraudulent transactions or optimizing trading strategies require models that

can adapt quickly to changing market conditions while maintaining high accuracy. By automating

the data splitting and training termination decisions, the methodology can help financial institutions

improve their models' performance and reduce risks. Real-world testing can involve evaluating the

model's performance on historical data and comparing it against traditional methods to showcase its

advantages in terms of both accuracy and efficiency. Backpropagation and Dropout regularization

(for layer t) is given by (5), (6) and (7) respectively.

 𝑤[𝑙] = 𝑤[𝑙] − 𝛼
𝜕𝐽

𝜕𝑤[𝑙]
 , (5)

 𝑏[𝑙] = 𝑏[𝑙] − 𝛼
𝜕𝐽

𝜕𝑏[𝑙]
, (6)

 𝑑[𝑙] = 𝑛𝑝.random.𝑟𝑎𝑛𝑑(𝑎[𝑙]. 𝑠ℎ𝑎𝑝𝑒[𝑂], 𝑎[𝑙]. 𝑠ℎ𝑎𝑝𝑒[1]) < 𝑘𝑒𝑒𝑝−𝑝𝑟𝑜𝑏, (7)

where 𝑑[𝑙] is the dropout mask and 𝑘𝑒𝑒𝑝−𝑝𝑟𝑜𝑏 is the probability of keeping a neuron active.

In all these real-world applications, the proposed method's performance can be quantified not only

in terms of traditional metrics but also in practical benefits such as reduced computational resources,

improved model generalization, and faster deployment of AI systems. These real-world

demonstrations serve as compelling evidence of the methodology's effectiveness and its potential to

transform various industries by making AI model development more efficient, accurate, and

adaptable to the challenges of complex and dynamic environments. Such applications validate the

practical relevance of the proposed approach and underscore its significance in advancing the field

of artificial intelligence.

5.2. Computational Overhead: Analysis of the computational savings achieved.

The analysis of the computational savings achieved through the approach of Splitting Effectively

with Premature Exiting Using Neural Network Search is crucial for understanding the practical

benefits and efficiency gains that this methodology offers in comparison to traditional methods.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

187

This analysis focuses on quantifying the reduction in computational resources, training time, and

associated costs, highlighting the potential impact on various applications. First and foremost, one

of the key advantages of this approach is its ability to significantly reduce the computational

resources required during the training phase of machine learning models. Traditional methods may

involve extensive trial and error in determining optimal splitting criteria and training epochs, often

consuming a substantial amount of CPU or GPU time and given by table 3 and figure 5. In contrast,
the neural network search approach dynamically adapts these decisions, learning from the data itself.

The savings in computational resources become particularly evident when dealing with large datasets

and complex neural network architectures. For instance, in deep learning applications involving

massive image datasets or natural language processing tasks, the proposed method can lead to

substantial reductions in training time. This not only accelerates the model development cycle but

also lowers the operational costs associated with utilizing high-performance computing

infrastructure.

Table 3. Network Hyperparameters

Furthermore, the computational savings achieved through premature exiting using neural network

search extend beyond just training time. By dynamically deciding when to halt training, the

approach prevents overfitting, which is a common issue in machine learning. Overfit models tend

to require more computational resources and time to train, and they often perform poorly on

unseen data. The methodology's ability to curb overfitting leads to a more efficient allocation of

computational resources and a higher likelihood of producing models that generalize well. In

addition to the direct computational benefits, there are indirect cost savings associated with this

approach. Traditional methods may necessitate extensive hyperparameter tuning and expert

intervention to fine-tune the data splitting process and training stopping criteria. These activities

require skilled personnel and can be time-consuming, translating into increased labor costs. In

contrast, the automated and adaptive nature of neural network search reduces the need for manual

intervention and hyperparameter tuning, further streamlining the model development pipeline and

reducing associated labor costs.

Network

Name

Learning

Rate

Batch

Size

Dropout

Rate (%)

Regularization

Lambda

NetA 0.01 32 5 0.1

NetB 0.005 64 10 0.2

NetC 0.001 128 15 0.3

NetD 0.0005 256 20 0.4

NetE 0.0001 512 25 0.5

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

188

Figure-5. Representation of Number of Layers vs. Various Metrics

To conduct a comprehensive analysis of computational savings, it is essential to measure and

compare specific metrics. These may include:

• Training Time: Quantify the time taken to train a model using the neural network search

approach and compare it to traditional methods on various datasets and network

architectures.

• Resource Utilization: Measure the CPU/GPU usage and memory consumption during

training for both approaches to assess resource efficiency.

• Cost Analysis: Calculate the cost savings achieved by reducing training time and the need

for manual intervention, considering factors like cloud computing costs or hardware

maintenance expenses.

• Scalability: Evaluate how the computational savings scale with the size of the dataset and

complexity of the neural network, showcasing the adaptability of the methodology.

• Model Performance: Ensure that the computational savings do not come at the expense of

model performance, comparing the accuracy and generalization capabilities of models

generated by both methods.

In brief, the analysis of computational savings achieved through Splitting Effectively with Premature

Exiting Using Neural Network Search is instrumental in demonstrating the practical advantages of

this approach. By quantifying the reduction in training time, resource utilization, and associated

costs, this analysis underscores the methodology's potential to make machine learning more efficient,

cost-effective, and accessible across a wide range of applications.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

189

Weight regularization (L2 regularization) and Restricted Boltzmann Machine (RBM) Energy

Function are given by (8) and (9):

 𝐽𝑟𝑒𝑔 = 𝐽 +
𝜆

2𝑚
∑ ‖

 𝑤[𝑙]‖𝐹
2 , (8)

 𝐸(𝑣, ℎ) = − ∑ 𝑎𝑖

 𝑣𝑖 − ∑ 𝑏𝑗

 ℎ𝑗 − ∑ 𝑣𝑖

 𝑤𝑖𝑗ℎ𝑗,

where 𝑣 and ℎ are visible and hidden units, respectively and 𝑎𝑖 , 𝑏𝑗 and 𝑤𝑖𝑗 are biases and
weights.

These savings not only accelerate model development but also contribute to the broader adoption of

AI in various industries. In Table 1 and Figure 3 dataset demonstrates the relationship between the

number of layers in different neural networks and their performance metrics. As the number of layers

increases, accuracy also sees an upward trend. However, this increase in accuracy comes at the cost

of longer training times and a higher number of parameters. The graph effectively visualizes this

trade-off, highlighting the efficiency and complexity of deeper networks. The focus in Table 2 and

Figure 4 is on the number of datasets trained against various metrics. As networks train on more

datasets, their validation and test errors decrease, indicating improved generalization. The graph

accentuates the importance of diverse training data in model performance. Table 3 and Figure 5 lay

out the different hyperparameters used in various networks, such as learning rate, batch size, dropout

rate, and regularization.

 Table-4. Network Activation and Initialization

Network Name Activation

Function

Final Layer

Activation

Weight

Initialization

Optimizer Count of

Network

Name

NetA ReLU Softmax Xavier Adam 2

NetB Sigmoid Sigmoid He SGD 1

NetC Tanh Softmax Xavier RMSprop 1

NetD Leaky ReLU Softmax He Adam 1

NetE Swish Sigmoid He Adagrad 1

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

190

These parameters play a crucial role in optimizing the network's performance and preventing

overfitting. Table 4 and Figure 6 dataset present the activation functions, final layer activations,

weight initializations, and optimizers used in different networks. Such choices greatly influence the

training dynamics and the model's ability to capture complex patterns. RBM Gibbs Sampling and

Softmax Activation Function are given by (9), (10) and (110 respectively.

Figure 6. Representation of Network Activation and Initialization

Table-5. Network Performance Metrics

𝑃(ℎ𝑗 = 1|𝑣) = 𝜎(𝑏𝑗 + ∑ 𝑤𝑖𝑗
⬚
⬚ 𝑣𝑖) (9)

𝑃(𝑣𝑖 = 1|ℎ) = 𝜎(𝑎𝑖 + ∑ 𝑤𝑖𝑗
⬚
⬚ ℎ𝑗) (10)

𝑃(𝑦 = 𝑗|𝑧) =
𝑒

𝑧𝑗

𝛴𝑘−1
𝐾 𝑒𝑧𝑘

 (11)

Where 𝐾 is the number of classes.

Network Name Feature Extraction

Time (s)

Inference Time

(ms)

Memory Usage

(MB)

Model File

Size (MB)

NetA 5 50 500 10

NetB 10 45 1000 20

NetC 15 40 1500 30

NetD 20 35 2000 40

NetE 25 30 2500 50

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

191

Figure-7. Representation of Network Performance Metrics

Table 5 and Figure 7 dataset delves into the practical implications of deploying these networks. It

covers metrics like feature extraction time, inference time, memory usage, and model file size. These

metrics are essential for real-world applications, where efficiency and speed are as crucial as

accuracy.

Moreover, to compare to other existing works, we evaluate the performance of our proposed

approach, we use the following metrics:

• Accuracy: Measured as the percentage of correctly classified images on the test set.

• Inference Time: Average time taken to process an image, measured in milliseconds (ms).

• Model Size: Total size of the trained model, measured in megabytes (MB).

• Energy Consumption: Measured using an energy monitoring tool to track power usage during

inference.

We assess the effectiveness of the early-exit strategies by comparing the following:

• Exit Accuracy: The accuracy of predictions made at each early-exit point.

• Exit Frequency: The proportion of inputs exiting at each early-exit point.

• Overall Efficiency: Combined metric of accuracy and inference time considering the early

exits.

In table 6; We consider a baseline comparison; We compare our proposed models against state-of-

the-art NAS methods (e.g., EfficientNet [18], DARTS [21]). In addition, We evaluate the accuracy

and inference time at each early-exit point and compare it to the final exit.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

192

As shown in table 6, Our proposed NAS achieves comparable accuracy to EfficientNet [18] and

DARTS [21], while being more computationally efficient. The integration of early-exit points

significantly reduces inference time for simpler inputs. The quantization and pruning techniques

reduce the model size without a significant loss in accuracy. Our approach demonstrates lower

energy consumption, making it suitable for deployment on resource-constrained devices.

As shown in table 7, Our approach shows notable improvements in inference time and energy

consumption due to the early-exit strategies, which are not typically considered in traditional NAS

methods. The table below provides a detailed comparison of our results with existing works:

Table 7, performance analysis to existing works

The results demonstrate that our proposed NAS framework with early-exit strategies offers a

significant improvement in computational efficiency while maintaining high accuracy. This makes

it highly suitable for real-time applications on resource-constrained devices.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

193

Discussions

The optimization of neural networks for AI splitting tasks represents a unique set of challenges.

AI splitting tasks involve dividing a neural network into smaller sub-networks that can be

distributed across multiple devices or nodes, often to improve efficiency, reduce latency, or ensure

scalability. This process requires careful consideration of architecture design, model size, and

resource allocation. Neural network search techniques play a pivotal role in finding the optimal

sub-networks for splitting tasks, as they help identify architectures that strike a balance between

performance and resource constraints. One of the fundamental approaches to neural network

search in the context of AI splitting tasks is architecture search. Architecture search methods

explore a vast search space of neural network architectures to find configurations that meet specific

criteria. These methods can be broadly categorized into two main categories: manual design and

automated search. Manual design, as the name suggests, involves the expertise and intuition of

human researchers. This approach has been prevalent in the early days of neural network

development when researchers handcrafted architectures based on their domain knowledge. While

manual design can lead to effective architecture, it is often limited by human biases and the

inability to explore the entire architecture space comprehensively. In the context of AI splitting

tasks, manually designing sub-networks can be time-consuming and may not fully leverage the

potential for optimization. The experimental results provide strong evidence supporting the

effectiveness and efficiency of our proposed restricted NAS framework with integrated early-exit

strategies. In this section, we discuss the implications of our findings, compare our approach with

existing methods, and highlight the contributions and limitations of our work.

Our proposed NAS framework achieved an accuracy of 85.0%, comparable to state-of-the-art

methods such as EfficientNet (85.4%) and DARTS (84.3%). However, our approach significantly

outperformed these methods in terms of inference time and energy consumption. For example, the

average inference time for our model was 30 ms, compared to 35 ms for EfficientNet and 40 ms

for DARTS. This demonstrates that our approach can deliver high accuracy while being

computationally efficient. The integration of early-exit strategies was a key factor in reducing

inference time and energy consumption. Our experiments showed that:

• Early-Exit 1 provided an accuracy of 82.0% with an inference time of only 10 ms and

energy consumption of 20 J.

• Early-Exit 2 improved accuracy to 83.5% with an inference time of 20 ms and energy

consumption of 30 J.

• The final exit maintained the highest accuracy of 85.0% with an inference time of 30 ms

and energy consumption of 45 J.

These results indicate that early exits allow the network to terminate inference early for simpler

inputs, significantly enhancing overall efficiency without greatly compromising accuracy.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

194

• Model Size and Optimization Techniques: The application of quantization and pruning

techniques effectively reduced the model size to 18 MB, which is smaller than EfficientNet

(20 MB) and DARTS (22 MB). This reduction in model size is critical for deployment on

resource-constrained devices, where memory and storage are limited.

Our approach demonstrates several advantages over existing NAS methods:

• Computational Efficiency: By integrating early-exit strategies, our framework significantly

reduces inference time and energy consumption, which is crucial for realtime applications

on mobile and IoT devices.

• Balanced Performance: While traditional NAS methods focus primarily on accuracy, our

approach achieves a balance between accuracy and computational efficiency, making it

more suitable for edge applications.

• Model Optimization: Quantization and pruning techniques further enhance the efficiency

of our models, making them lightweight and faster without sacrificing significant accuracy.

The results of our experiments have important implications for near-sensor AI applications:

• Real-Time Inference: The reduced inference time and energy consumption make our

approach ideal for applications requiring real-time responses, such as autonomous vehicles,

drones, and smart cameras.

• Resource-Constrained Environments: The smaller model size and efficient computation

enable deployment on devices with limited resources, such as smartphones and IoT

sensors, expanding the potential use cases for advanced AI models.

6. Conclusion

 The proposed restricted NAS framework with integrated early-exit strategies offers a significant

advancement in the design of efficient neural networks for resource-constrained environments.

The experimental results demonstrate that our approach achieves a balance between high accuracy

and computational efficiency, making it well-suited for real-time, near-sensor AI applications.

Future research should build on these findings to further refine and extend the capabilities of the

proposed framework. While our approach shows promising results, there are several limitations

and areas for future work. Our experiments focused on image classification. Future work should

explore the generalization of our approach to other tasks, such as object detection and

segmentation. Developing more sophisticated early-exit strategies that adapt dynamically based

on input complexity could further enhance efficiency. Tailoring the optimization techniques to

specific hardware platforms could yield additional performance improvements.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

195

References

[1] Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions.

arXiv preprint arXiv:1610.02357.

[2] Figurnov, M., Collins, M. D., Zhu, Y., Zhang, L., Huang, J., Vetrov, D., & Salakhutdinov,

R. (2017). Spatially adaptive computation time for residual networks. In Proceedings of

the IEEE conference on computer vision and pattern recognition (pp. 1039-1048).

[3] Huang, G., Chen, D., Li, T., Wu, F., Van Der Maaten, L., & Weinberger, K. Q. (2017).

Multiscale dense networks for resource efficient image classification. arXiv preprint

arXiv:1703.09844.

[4] Bolukbasi, T., Wang, J., Dekel, O., & Saligrama, V. (2017, July). Adaptive neural networks

for efficient inference. In International Conference on Machine Learning (pp. 527-536).

PMLR..

[5] Lechervy, A., & Jurie, F. (2023). Multi-Exit Resource-Efficient Neural Architecture for

Image Classification with Optimized Fusion Block. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (pp. 1486-1491)..

[6] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image

Recognition.

[7] In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)

(pp. 770-778).

[8] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

[9] Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep Learning (Vol. 1).

MIT press Cambridge.

[10] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,

... & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree

search. Nature, 529(7587), 484-489.

[11] Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv

preprint arXiv:1804.02767.

[12] Wang, Z., & He, B. (2016). A novel deep learning method for imbalanced fault

classification of machinery. Mechanical Systems and Signal Processing, 72, 303-315.

[13] 1Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical Evaluation of Rectified

Activations in Convolutional Network. arXiv preprint arXiv:1505.00853.

[14] Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

[15] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with

deep convolutional neural networks. Communications of the ACM, 60(6), 84-90.

[16] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., ... &

Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition:

The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82-

97.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

196

[17] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

... & Petersen, S. (2015). Human-level control through deep reinforcement learning.

Nature, 518(7540), 529-533.

[18] Wang, S., Tang, J., Zou, W., & Hou, J. (2017). FANG: A Fast and Scalable Word

Embedding Approach. In Proceedings of the 2017 ACM on Conference on Information and

Knowledge Management (CIKM) (pp. 1857-1860).

[19] Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for

convolutional neural networks. In International conference on machine learning (pp. 6105-

6114). PMLR..

[20] Elsken, T., Metzen, J. H., & Hutter, F. (2019). Neural architecture search: A survey.

Journal of Machine Learning Research, 20(55), 1-21..

[21] Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement

learning. arXivpreprint arXiv:1611.01578..

[22] Liu, H., Simonyan, K., & Yang, Y. (2018). Darts: Differentiable architecture search.

arXiv preprint arXiv:1806.09055.

[23] Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2019, July). Regularized evolution

for image classifier architecture search. In Proceedings of the aaai conference on artificial

intelligence (Vol. 33, No. 01, pp. 4780-4789).

[24] Manishimwe, A., Alexander, H., Kaluuma, H., & Dida, M. (2021). Integrated

mobile application based on machine learning for East Africa stock market. Journal of

Information Systems Engineering & Management, 6(3), em0143.

The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024

197

