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Abstract: Deep neural networks have significantly advanced the field of image and text 

categorization, pushing the boundaries of machine learning. However, designing efficient neural 

network architectures remains a challenge, often requiring complex and costly methods to find 

optimal configurations. This paper introduces a novel approach to architectural design through a 

restricted search method, focusing on creating networks that are both cost-effective and fast, 

suitable for AI systems with strict memory and time limitations, particularly in near-sensor 

applications. Neural networks now surpass traditional machine learning techniques in various 

computational perception tasks. Despite their success, deploying these advanced models on mobile 

and IoT devices is computationally challenging, leading to reliance on cloud-based solutions. Such 

dependence increases communication costs and potential system inoperability during connectivity 

outages. Our method addresses these issues, offering a viable solution for efficient, local 

deployment of advanced neural networks in resource-constrained environments. We propose a 

conceptual framework that leverages a Deep neural networks (DNN) approach to decide whether 

data should be processed locally or sent to the cloud, optimizing both computational resources and 

performance. Our findings suggest that this method requires sending only 52% of test data to the 

server, achieving an overall system accuracy of 48%. This significantly enhances the efficiency of 

client-server models and supports the implementation of AI capabilities on local devices.  
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By employing a strategic search for computational models based on content extraction, we 

improve the efficiency and speed of AI operations. Our experiments demonstrate the practicality 

and effectiveness of this approach, which has also been tested on actual hardware, offering a 

promising direction for enhancing AI applications in resource-constrained environments. 

Keywords: Efficiency, Query Issues, Branch Scanning, Metrics, Retrieval Phase, Perception, 

Networks, Sensor Fusion, Developing Artificial Intelligence, Simulation, Techniques, 

Convolutional Networks Layout 
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  العميقة العصبية الشبكات  استخدام  خلال  من الاصطناعي الذكاء أنظمة دراسة

 المقيدة

 

  كبير،   بشكل  والنصوص   الصور  تصنيف  مجال   تطوير   في   العميقة   العصبية   الشبكات   ساهمت   لقد   الملخص:

  تحديًا،  يمثل  الفعالة   العصبية  الشبكات   بنيات   تصميم   يزال لا ذلك،  ومع. الأمام   إلى  الآلي   التعلم   حدود   دفع  مما

  للتصميم   جديدا  نهجا   الورقة  هذه  تقدم.  المثالية   التكوينات   على  للعثور   ومكلفة   معقدة  أساليب   يتطلب   ما  وغالبًا

  وسريعة،   التكلفة   حيث   من   فعالة   شبكات   إنشاء   على   التركيز   مع   مقيدة،  بحث   طريقة   خلال  من   المعماري 

  أجهزة   تطبيقات   في  وخاصة  والوقت،  الذاكرة  على  الصارمة  القيود   ذات   الاصطناعي  الذكاء  لأنظمة  ومناسبة

  الحسابي   الإدراك  مهام  في  التقليدية  الآلي   التعلم  تقنيات  على  الآن   العصبية   الشبكات   تتفوق. القريبة   الاستشعار 

  إنترنت   وأجهزة  المحمولة  الأجهزة   على   المتقدمة  النماذج  هذه   نشر   فإن   نجاحها،   من  الرغم  وعلى .  المختلفة

  إلى  الاعتماد   هذا  يؤدي .  السحابة  إلى  المستندة  الحلول  على   الاعتماد   إلى  يؤدي  مما  حسابياً،  تحدياً  يمثل   الأشياء

  وتقدم   المشكلات،  هذه   طريقتنا   تعالج .  الاتصال  انقطاع   أثناء   النظام   تشغيل   عدم   واحتمال  الاتصال   تكاليف   زيادة

  إطارًا   نقترح.  الموارد   المحدودة  البيئات   في  المتقدمة  العصبية  للشبكات   الفعال  المحلي  للنشر  للتطبيق  قابلاً   حلاً 

  أو   محليًا  البيانات   معالجة  يجب   كان  إذا  ما  لتحديد  (DNN) العميقة  العصبية  الشبكات   نهج  يعزز  مفاهيميًا 

  أن   إلى  إليها  توصلنا  التي  النتائج  تشير . والأداء الحسابية  الموارد   تحسين  إلى  يؤدي  مما   السحابة،  إلى  إرسالها

  تبلغ   للنظام   إجمالية  دقة  يحقق  مما   الخادم،  إلى  الاختبار   بيانات   من  فقط%  52  إرسال  تتطلب   الطريقة  هذه

  الأجهزة  على  الاصطناعي   الذكاء  قدرات   تنفيذ   ويدعم   العميل   خادم   نماذج   كفاءة  كبير  بشكل  يعزز   وهذا%.  48

  نقوم   المحتوى،   استخراج   على   القائمة   الحسابية   النماذج  عن   الاستراتيجي   البحث   توظيف   خلال   من .  المحلية

  وفعاليته،  النهج  لهذا  العملي التطبيق  مدى  تجاربنا   وتظُهر.  الاصطناعي الذكاء عمليات   وسرعة   كفاءة  بتحسين 

  في  الاصطناعي  الذكاء  تطبيقات   لتعزيز   واعدًا  اتجاهًا  يوفر   مما  فعلية،  أجهزة   على  أيضًا   اختباره   تم   والذي

 الموارد.  المحدودة البيئات 
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1. Introduction  

 

The rapid development of artificial intelligence (AI) has led to an increase in complex tasks that 

require efficient and effective splitting. Premature exiting, an early termination of certain 

operations, can be a vital strategy for optimizing performance in real-time applications. This paper 

delves into using neural network search techniques to optimize this process. Artificial Intelligence 

(AI) has experienced monumental growth over the past few decades, evolving from rudimentary 

algorithms to sophisticated systems that can perform tasks previously believed to be exclusive to 

human intelligence. One area of AI that has been gaining traction is the ability to effectively split 

tasks, a crucial aspect for improving efficiency, especially in large-scale applications. This process, 

known as AI splitting, allows systems to divide complex tasks into more manageable sub-tasks. 

But with the rise of real-time applications, there has been a pressing need to ensure not just 

effective splitting, but also timely response. Enter the concept of premature exiting—a strategy 

that allows an AI system to terminate certain operations early, ensuring faster results, albeit at the 

potential cost of some accuracy, see [1], [2], [3], [4], [5]. 

 

Premature exiting is rooted in the understanding that in many scenarios, waiting for a complete 

and thorough computation might be less optimal than obtaining a quicker, albeit slightly less 

accurate result. For instance, in real-time object detection, it might be more beneficial to identify 

a potential threat quickly rather than wait for a thorough analysis that confirms the nature of every 

object in a scene. The challenge, however, lies in determining the optimal point at which to exit 

prematurely without compromising the integrity of the result excessively. This is where neural 

network search techniques come into play. Neural networks, inspired by the human brain's 

architecture, have been at the forefront of many recent AI advancements. These networks consist 

of interconnected nodes (neurons) that process and transmit information. The depth and 

complexity of these networks can be vast, allowing them to model intricate patterns and 

relationships in data. But this depth is a double-edged sword: while it provides the network with 

its powerful modeling capability, it also means that processing can be lengthy, especially in deeper 

architectures, see [6], [7], [8], [9]. 

 

Neural network search techniques aim to find the most efficient pathways or configurations within 

these expansive networks. By employing these techniques, one can optimize a network to 

recognize when it has gathered "enough" information to decide, allowing it to exit prematurely 

and deliver a result. Essentially, instead of traversing the entire depth of the network, the system 

can determine an exit point where the prediction's confidence surpasses a predetermined threshold. 

This is analogous to a student answering a question once they're reasonably sure of the answer, 

rather than pondering all possible solutions [10], [11], [12], [13], [14]. 
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But how does one determine these exit points? The answer lies in the training process. When 

training a neural network, we typically feed it vast amounts of data, adjusting its internal 

parameters to minimize the difference between its predictions and the actual outcomes. By 

integrating premature exiting into this training paradigm, we can simultaneously optimize 

accuracy and speed. The neural network is trained not only to recognize patterns in data but also 

to gauge its own confidence in its predictions. When this confidence reaches a level deemed 

satisfactory, the network can opt for a premature exit, thereby speeding up the response time [15], 

[16], [17], [18]. It's worth noting that the balance between speed and accuracy is a delicate one. If 

a network exists too early, it risks producing results that are too inaccurate to be useful. Conversely, 

if it waits too long, it might negate the benefits of premature exiting. This balance becomes even 

more critical in applications where stakes are high, such as medical diagnoses or autonomous 

vehicle navigation. Also, the integration of neural network search techniques into AI splitting, 

combined with the strategy of premature exiting, holds significant promise for the future of real-

time AI applications. By allowing systems to intelligently determine when they have enough 

information to make a decision, we can achieve a harmonious blend of speed and accuracy. As the 

demand for real-time AI continues to grow, strategies like these will be indispensable in ensuring 

that our systems are both swift and reliable. As with all technological advancements, continuous 

research and refinement are essential, but the foundations laid by these techniques are undeniably 

robust and promising for the future landscape of AI. 

 

 

2. Research Background  

 

In the realm of artificial intelligence (AI), the ability to efficiently split tasks is paramount. This 

process, often referred to as task decomposition, involves breaking down complex problems into 

smaller, more manageable sub-tasks [1], [2], [4], [5]. Such division not only makes problem-

solving more tractable but also allows for parallel processing, speeding up computations. For 

instance, in the field of robotics, a task like "cleaning a room" might be split into sub-tasks like 

"picking up objects," "vacuuming the floor," and "dusting surfaces" ([12], [17]). Each sub-task can 

then be tackled using specialized algorithms or models. Similarly, in natural language processing, 

understanding a paragraph might involve tasks such as sentence segmentation, word tokenization, 

syntactic parsing, and semantic analysis [2]. 

 

By splitting these tasks, AI researchers can focus on optimizing individual components, which 

collectively leads to improved overall performance. Furthermore, task splitting is pivotal in 

collaborative AI systems, where multiple agents work together [7]. Each agent can be assigned a 

specific sub-task, fostering cooperation and efficiency. In essence, splitting tasks in AI not only 

simplifies complex challenges but also harnesses the power of specialization and collaboration, 

pushing the boundaries of what AI systems can achieve. 
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Premature exiting, in the context of deep learning and neural networks, refers to the practice of 

allowing a model to make early predictions before processing through all its layers. Typically, 

deep models, especially those like deep convolutional neural networks, process input data through 

multiple layers to derive a final prediction. However, with premature exiting, if the model is 

confident enough in its prediction at an earlier stage, it can bypass the remaining layers and provide 

an immediate output ([1], [10], [11]). The primary benefit of this approach is efficiency [12]. As 

deep learning models have grown deeper and more complex, their computational demands have 

increased exponentially. By allowing for early exits, the computational cost can be significantly 

reduced, especially when the model is dealing with simpler inputs that don't necessitate full 

processing. This results in faster predictions and saves valuable resources, making it particularly 

beneficial for real-time applications or devices with limited computational power. Moreover, 

premature exiting can also aid in preventing overfitting [13]. By not always relying on the deeper 

layers, which are more prone to fitting noise in the data, models can sometimes generalize better 

to unseen data. However, implementing premature exiting comes with its set of challenges [14]. 

The first is determining the criteria for an early exit. The model must be equipped with a 

mechanism to gauge its confidence in a prediction. This often involves auxiliary classifiers placed 

at various stages of the network, adding to the model's complexity. Furthermore, training such a 

model requires careful consideration. Traditional training methods might not be directly 

applicable, and new strategies, such as staged training or specialized loss functions, might be 

necessary. Another challenge is ensuring that the premature exit does not compromise the accuracy 

of the model. While the idea is to exit early for simpler inputs, there is always a risk that the model 

might make an incorrect early prediction, especially in borderline cases. Balancing speed and 

accuracy is crucial ([15], [16], [18]). Finally, premature exiting offers a promising avenue to 

enhance the efficiency of deep learning models, making them more adaptable to diverse 

applications and constraints. While the benefits in terms of speed and potential generalization are 

apparent, the challenges in training and implementation necessitate thorough research and careful 

design. As AI continues to integrate more deeply into real-world applications, strategies like 

premature exiting will play a pivotal role in bridging the gap between computational demand and 

available resources. 

 

The quest to optimize neural network architectures has been a central theme in the evolution of 

deep learning. Historically, the design of these networks was largely based on human intuition, 

experimentation, and manual tweaking ([6], [7], [8], [9]). Researchers would adjust layers, nodes, 

and other hyperparameters based on heuristic insights, often informed by previous successes and 

failures. Pioneering architectures like LeNet, AlexNet, and VGG were products of this manual 

design process. However, as the complexities of tasks and datasets grew, so did the architectures, 

making manual exploration increasingly infeasible. 

 

 



The Islamic University Journal of Applied Sciences (JESC) Issue I, Volume VI, July 2024 

 

174 

Enter the era of automated neural architecture search (NAS) ([1], [2], [4], [5], [19]). NAS 

algorithms aim to automatically discover optimal or near-optimal network architectures [20], 

alleviating the need for human-led trial and error. The seminal work in this space used 

reinforcement learning, where a controller network proposed architectures and was rewarded 

based on the performance of the resultant networks [21]. While effective, early NAS methods were 

computationally expensive, often requiring thousands of GPU hours. 

 

Recent advancements have addressed these inefficiencies. One significant leap is weight-sharing 

methods, where different architectures share weights, enabling a faster evaluation of multiple 

architectures without training each one from scratch ([10], [11], [12], [13], [14], [22]). Techniques 

like DARTS represent this category, allowing for more efficient search processes. Another 

advancement is the use of evolutionary algorithms, inspired by natural selection, to evolve optimal 

network designs [23]. Furthermore, the rise of transfer learning, where pretrained models on large 

datasets are fine-tuned for specific tasks, has also influenced NAS, leading to methods that search 

for optimal fine-tuning strategies ([10], [24]). In reflection, the journey from manual design to 

automated neural network search encapsulates the broader evolution of AI: from relying heavily 

on human expertise to developing self-optimizing systems. As the field continues to progress, the 

boundary between designer and design is poised to blur further, with AI systems playing an 

increasingly active role in their own evolution.  

While existing NAS methods have achieved remarkable results, they often focus on maximizing 

accuracy without sufficient consideration of deployment constraints on edge devices. Our 

approach distinguishes itself by explicitly incorporating a restricted search method aimed at 

optimizing both cost-effectiveness and speed, making it highly suitable for near-sensor 

applications with stringent memory and time limitations. In comparison to methods like 

BranchyNet and SACT, which introduce early-exit strategies to improve inference speed, our 

method integrates these strategies within the NAS framework to ensure that the resulting 

architectures are inherently designed for efficient early exits. This allows for a more seamless and 

effective balance between performance and computational efficiency. 

 

3. Methodology  

3.1. Neural Network Architecture: Details of the neural architecture employed.  

The neural architecture employed in this context utilizes a deep convolutional neural network 

(CNN) designed for image classification tasks. This network architecture is specifically tailored to 

process and analyze visual data, making it suitable for a wide range of computer vision 

applications. CNN consists of multiple layers, including convolutional layers, pooling layers, and 

fully connected layers. The convolutional layers are responsible for learning spatial features from 

the input image through a series of convolution operations, effectively detecting patterns and 

edges. These layers are typically followed by pooling layers, which reduce the spatial dimensions 

of the feature maps while retaining essential information. This process is repeated multiple times 

to extract increasingly abstract and complex features from the image. 
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Figure 1. Information Flow through the layers of the neural network 

 

The extracted features are then passed through one or more fully connected layers, which act as a 

classifier to make predictions. These layers learn to associate the extracted features with specific 

classes or categories, enabling the network to identify and classify objects within the input image. 

Tree diagram for artificial intelligence is given by figure 1. In this diagram, you can see the flow 

of information through the layers of the neural network, illustrating how the input image is 

processed to make predictions about its content. This neural architecture, with its convolutional 

layers, pooling layers, and fully connected layers, forms the foundation for many successful image 

recognition and classification tasks in the field of deep learning. 

 

3.2. Training Procedure: Information on hyperparameters, training iterations, and 

evaluation metrics.  

The training procedure of a machine learning model is a critical aspect of its development, as it 

directly influences the model's performance and capabilities. It involves several key components, 

including the selection of hyperparameters, determining the number of training iterations, and 

establishing evaluation metrics to assess the model's performance. Hyperparameters are 

parameters that are set prior to the training process and cannot be learned from the data. They 

significantly impact the model's behavior and generalization ability. Examples of hyperparameters 

include learning rates, batch sizes, and the architecture of neural networks. Choosing appropriate 

hyperparameters is often done through experimentation and tuning, as finding the right 

combination can significantly impact the model's performance. Training iterations refer to the 

number of times the model's weights are updated using the training data. More iterations can lead 

to better convergence, but it can also risk overfitting the model to the training data. Balancing this 

trade-off is crucial. Additionally, techniques like early stopping can be employed to halt training 

when performance on a validation set plateaus, preventing overfitting. 
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Architecture diagram for restrictive deep neural network is given by Figure 2. A restrictive deep 

neural network architecture is designed to be efficient in terms of computational resources, making 

it suitable for deployment on devices with limited memory and processing power, such as mobile 

and IoT devices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Architecture diagram for restrictive deep neural network 

 

 

Evaluation metrics are used to quantitatively assess how well the model performs on a specific 

task. The choice of metrics depends on the problem at hand. For classification tasks, metrics like 

accuracy, precision, recall, and F1-score are commonly used. In regression tasks, metrics like mean 

squared error (MSE) or mean absolute error (MAE) are employed. The choice of metrics should 

align with the project's objectives and provide a comprehensive understanding of the model's 

performance. Furthermore, it's important to establish a robust evaluation protocol that includes 

cross-validation, or a separate validation set to ensure the model's performance generalizes well to 

unseen data. So, the training procedure of a machine learning model involves making informed 

decisions about hyperparameters, determining the appropriate number of training iterations, and 

defining relevant evaluation metrics. These components collectively shape the model's 

effectiveness and its ability to solve real-world problems. A well-designed training procedure is 

essential for building models that can make accurate predictions and drive meaningful insights 

from data. As depicted in the following Algorithm 1. 
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__________________________________________________________________________________ 

Algorithm 1 

__________________________________________________________________________________ 

1. Start: Begin the algorithm. 

2. Input Constraints: Define the input constraints, including memory limits, processing time, and accuracy 

requirements. 

3. Initialize Search Space: Initialize the search space with a set of possible network architectures. 

4. Evaluate Initial Population: Evaluate the initial population of architectures against the defined 

constraints using a performance metric (e.g., accuracy). 

5. Selection: Select architectures that best meet the constraints for further exploration. 

6. Generate Variants: For each selected architecture, generate variants by altering layers, nodes, or 

connections. 

7. Evaluate Variants: Evaluate the new variants against the constraints. 

8. Check Improvement: Check if there is an improvement in the performance metric within the 

constraints. 

o If Yes: Update the selection with better-performing architectures. 

o If No: Proceed to termination criteria. 

9. Termination Criteria: Determine if the search has met the termination criteria (e.g., maximum iterations 

or no further improvement). 

o If Not Met: Go back to step 5 (Selection). 

o If Met: Proceed to the final step. 

10. Output Optimal Architecture: Output the architecture(s) that best meet the constraints and 

performance metric. 

11. End: End of the algorithm. 

 

3.3. Objectives and Motivation  

The primary objective of this research is to address the significant challenges associated with the 

design and implementation of artificial intelligence (AI) systems, particularly those employing 

deep neural networks (DNNs), under stringent resource constraints. These challenges include high 

computational demands, extensive memory requirements, and the need for rapid processing 

speeds, which are critical for AI applications in near-sensor environments and on edge devices. 

The motivation behind this work is twofold: 
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1. Efficiency in Design: Despite the proven capabilities of DNNs in various domains, such as 

image and text categorization, the design of these networks remains a labor-intensive and complex 

task. Traditional methods for finding optimal network architectures are often prohibitively 

expensive and time-consuming. There is a pressing need for a streamlined approach that can 

discover efficient architecture more rapidly and at a lower cost. 

2. Operational Constraints: Many AI applications are intended for deployment in environments 

with limited computational resources, such as mobile and Internet of Things (IoT) devices. These 

environments necessitate models that not only perform well but also adhere to strict memory and 

processing time limitations. Furthermore, reliance on cloud-based processing introduces issues 

related to connectivity dependence, data privacy, and operational costs. 

 

To address these challenges, this work proposes a novel, constrained architectural search 

methodology that aims to identify efficient DNN architectures that can operate within the specific 

limitations of near-sensor AI systems. By doing so, this research seeks to broaden the applicability 

of AI technologies, enabling their deployment in a wider range of settings, including those where 

computational resources are scarce. The goal is to enhance the performance and accessibility of 

AI systems, making them more adaptable to various operational constraints while maintaining high 

levels of accuracy and efficiency. Our methodology focuses on designing a restricted neural 

architecture search framework that optimizes for both cost-effectiveness and speed, making it 

suitable for deployment on resource-constrained devices such as mobile phones and IoT devices. 

To further enhance computational efficiency, we incorporate early-exit strategies into the NAS 

framework. These strategies allow the network to make intermediate predictions, which can 

significantly reduce inference time and resource usage for simpler inputs. By incorporating early-

exit strategies within a restricted NAS framework, our methodology addresses the key challenges 

of deploying efficient neural networks on resource-constrained devices as shown in algorithm 1. 

The proposed approach not only improves computational efficiency but also ensures high 

performance, making it highly suitable for near-sensor AI applications. 

 

 

4. Proposed Approach  

In our study on premature exiting in machine learning models, we devised an experimental set 

comprising various datasets and model architectures to assess the efficacy of our tailored objective 

function. By integrating validation metrics and convergence criteria into the objective function, 

we aimed to determine the optimal point for halting the training process. Our experimental setup 

involved dividing datasets into training, validation, and test segments, with models subjected to 

training under controlled conditions. Performance metrics such as accuracy, precision, and recall 

were monitored across epochs. 

To validate the performance and efficiency of premature exiting, we implemented a systematic 

comparison against traditional training methods. This involved tracking the computational 

resources consumed and the time taken to reach peak performance.  
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The results were obtained through rigorous testing, where each model was trained multiple times 

to ensure consistency and reliability of the outcomes. Our analysis focused on identifying patterns 

of performance plateauing and degradation, using these insights to refine the premature exiting 

criteria. The innovative aspect of our approach lies in the dynamic adjustment of the training 

process based on real-time performance evaluation, ensuring models do not overfit or waste 

computational resources. This methodology has shown promise in significantly reducing training 

times while maintaining or even enhancing model performance, marking a substantial 

improvement over traditional extended training method. Our findings underscore the importance 

of a well-crafted objective function in optimizing machine learning workflows, especially in 

resource-constrained scenarios. 

 

4.1. Neural Search Strategy: Explanation of the search strategy used to explore possible split 

points. 

In the realm of neural networks and machine learning, the neural search strategy refers to a 

systematic approach for exploring and identifying optimal split points or decision boundaries 

within data. This strategy plays a pivotal role in various applications such as decision trees, 

gradient boosting, and neural network architectures, particularly when dealing with classification 

tasks. 

The primary objective of a neural search strategy is to efficiently navigate through the feature 

space and identify the points at which the model can separate data into different classes or 

categories most effectively. To achieve this, it often employs algorithms like gradient descent, 

backpropagation, or evolutionary optimization techniques. In decision trees, for example, the 

search strategy evaluates different features and their thresholds to split data into subsets that are as 

pure as possible in terms of class labels. Gradient boosting algorithms iteratively optimize the 

choice of split points to minimize the residual errors. In neural networks, the search strategy 

involves adjusting the weights and biases of neurons to minimize the loss function, effectively 

learning the optimal decision boundaries. 

 

The choice of a search strategy depends on the problem complexity, dataset size, and 

computational resources available. More sophisticated strategies may involve random sampling, 

genetic algorithms, or Bayesian optimization to efficiently explore the vast feature space. 

Ultimately, an effective neural search strategy is crucial for training accurate models that can 

generalize well to unseen data. It enables models to learn intricate patterns and relationships within 

the data, leading to improved performance and predictive capabilities across various machine 

learning tasks. 
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The restricted NAS framework operates within a constrained search space to ensure that the 

resulting architectures are computationally feasible for edge devices.  

The key components of the NAS framework are:  

• Search Space Definition: Our search space includes various types of layers (e.g., 

convolutional, pooling, and fully connected layers), with constraints on their size and 

complexity to ensure efficiency. 

• Search Strategy: We utilize a modified evolutionary algorithm that focuses on optimizing 

both accuracy and computational efficiency. The evolutionary process involves selection, 

crossover, and mutation operations tailored to our constraints. 

• Evaluation Metric: We introduce a composite metric that combines accuracy and 

computational cost to guide the search process towards efficient architectures. Algorithm 

2 demonstrate such explanation. 

 

 

4.2. Exit Criteria: Conditions for premature exiting. 

Exit criteria in the context of machine learning and optimization refer to the conditions or 

thresholds that determine when a specific process, such as training a model or conducting an 

experiment, should be prematurely terminated. These criteria are essential for preventing 

unnecessary computational expenses and ensuring the efficient allocation of resources. Common 

exit criteria include reaching a predefined level of performance (e.g., accuracy or loss), achieving 

convergence (i.e., minimal improvement in the objective function), exceeding a time or resource 

limit, or detecting signs of overfitting. By establishing clear and appropriate exit criteria, 

practitioners can strike a balance between obtaining desirable results and conserving valuable time 

and resources.  

 

As shown in algorithm 3 , Early-exit strategies allow the network to make intermediate predictions, 

thus reducing inference time and computational load for simpler inputs. We integrate early-exit 

branches at various depths of the network, enabling a flexible trade-off between accuracy and 

efficiency. 

 

• Design of Early-Exit Branches: Each early-exit branch consists of a few layers (e.g., 

convolutional layers followed by a classifier) designed to provide accurate predictions with 

minimal computation. 

• Optimization of Early-Exit Criteria: We optimize the criteria for early-exit (e.g., 

confidence thresholds) during the training process to ensure that the network exits early 

whenever possible without compromising overall performance. 
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Algorithm 2: Restricted NAS Framework  

1: Initialize the population with random architectures 

within the constrained search space  

2: for each generation do  

3: Evaluate each architecture using the composite 

metric (accuracy and computational cost)  

4: Select the top-performing architectures based on the 

composite metric  

5: Apply crossover and mutation to generate new 

candidate architectures 

6: Incorporate early-exit branches into candidate 

architectures  

7: Re-evaluate architectures with early-exit branches 

using the composite metric  

8: Select the final set of architectures for the next 

generation  

9: end for  

10: Return the best-performing architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Results  

Benchmarking is a fundamental practice in the field of artificial intelligence (AI) that involves 

comparing a proposed approach against traditional methods to assess its effectiveness and 

efficiency. In the context of splitting data effectively with premature exiting using neural network 

search, benchmarking plays a pivotal role in evaluating the novelty and performance of the 

proposed methodology in comparison to established AI techniques. Traditional methods for 

splitting data and implementing premature exiting in AI encompass a range of strategies, including 

decision trees, random forests, gradient boosting, and various heuristic approaches. These methods 

often rely on handcrafted rules, feature engineering, or statistical techniques to make data 

partitioning decisions and halt the training process when necessary. They have been widely used 

in machine learning for classification tasks and have proven to be effective in many domains. 

Activation function and Forward propagation in a layer is given by (1) and (2). 

 

                                                                 𝜎(𝑧) =
1

1+𝑒𝑧
 ,                                                                (1) 

                                                                  𝑎[𝑙] = 𝑔[𝑙](𝑧[𝑙]),                                                          (2) 

where 𝑧[𝑙] = 𝑤[𝑙]𝑎[𝑙−1] + 𝑏[𝑙] and 𝑔[𝑙] is the activation function for layer 1. 

Algorithm 3: Early-Exit Branch Optimization  

1: Initialize the network with early-exit branches at 

predefined depths  

2: for each training epoch do  

3: for each input sample do  

4: Compute intermediate predictions at each earlyexit 

branch  

5: Evaluate the confidence of each intermediate 

prediction  

6: If confidence exceeds the threshold, use the 

intermediate prediction  

7: Else, pass the input to the next layer  

8: end for  

9: Update the network parameters and confidence 

thresholds based on loss and accuracy  

10: end for  

11: Return the optimized network with early-exit 

branches 
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We conduct experiments on standard image classification datasets, including CIFAR-10 and 

ImageNet, which are widely used benchmarks for evaluating neural network performance. For 

hardware configuration, We use an NVIDIA Tesla V100 GPU for training and evaluation, with 

32GB of memory. For edge device simulations, we utilize a Raspberry Pi 4 Model B with 4GB 

RAM. For the software configuration, the experiments are conducted using PyTorch 1.7 as the 

deep learning framework. We implement our NAS framework and early-exit strategies within this 

environment. 

The proposed approach, on the other hand, involves utilizing neural network-based search 

strategies to automatically discover optimal data splitting points and exit criteria. This 

methodology leverages the power of deep learning and neural networks to learn intricate patterns 

and relationships within the data, adaptively adjusting splitting decisions during training. It seeks 

to combine the flexibility and representation learning capabilities of neural networks with the 

efficiency of premature exiting, potentially leading to more accurate and efficient models. 

Benchmarking these two approaches involves several key aspects: 

 

• Performance Metrics: To assess the effectiveness of both methods, various performance 

metrics are considered, such as accuracy, precision, recall, F1-score, and computational 

efficiency. These metrics provide a comprehensive view of how well each approach splits 

data and makes premature exit decisions. 

• Data Diversity: A diverse dataset comprising different types of data, including structured, 

unstructured, and real-world data, is used to test the robustness and generalization ability 

of the methods. This ensures that the benchmarking results are applicable across various 

domains and scenarios. 

• Computational Resources: Benchmarking includes evaluating the computational 

resources required for both approaches. This involves measuring the training time, memory 

usage, and hardware requirements, allowing practitioners to make informed decisions 

based on available resources. 

• Hyperparameter Tuning: The benchmarking process may also involve hyperparameter 

tuning for both methods to ensure that they are operating at their optimal configurations. 

This helps to avoid any potential bias in the comparison due to suboptimal parameter 

settings. 

• Statistical Significance: To draw meaningful conclusions, statistical significance tests are 

often applied to assess whether observed differences in performance are statistically 

significant or could have occurred by random chance. 

• Ultimately, benchmarking serves as a critical step in the evaluation and validation of the 

proposed neural network-based approach for splitting data effectively with premature 

exiting. 
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Table-1. Number of layers vs. various metrics 

  

Network 

Name 

Number of 

Layers 

Accuracy (%) Training Time 

(hrs) 

Number of Parameters 

(millions) 

NetA 5 85 1.5 2 

NetB 10 90 2 4 

NetC 15 92 3 8 

NetD 20 93 4 16 

NetE 25 94 5 32 

 

It allows researchers and practitioners to determine whether the new methodology provides a 

substantial improvement over traditional AI methods in terms of accuracy, efficiency, and 

adaptability to various data types. Additionally, benchmarking can help identify scenarios where 

the neural network-based approach excels and where traditional methods may still have their place, 

facilitating informed decision-making in AI model development and deployment. Number of 

layers with respect to various metrics is given by table 1 and figure 3. It is noticed that while the 

number of layers increases it affects the accuracy level to be increased on one hand, but we see , 

it’s costly in the time of training. The Cost function and Cross‐Entropy cost function for 

classification is given below: 

 

 

                         𝐼(𝑊, 𝑏) =
1

2𝑚
∑ (  𝑦(𝑖) − �̂�)2,                                                                                (3) 

 

                         𝐼(𝑊, 𝑏) = −
1

𝑚
∑ 𝑦(𝑖) 

  log (�̂�) + (1 − 𝑦(𝑖)) log (1 − �̂�),                                    (4) 
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                         Figure-3. Representation of Number of Layers vs. Various Metrics 

 

5.1. Real-world Application: Demonstrating the performance of the proposed method in real-

world scenarios. 

Demonstrating the performance of the proposed method for Artificial Intelligence Splitting 

Effectively with Premature Exiting Using Neural Network Search in real-world scenarios is crucial 

to validate its practical utility and effectiveness across diverse applications. Such real-world 

applications showcase the methodology's adaptability and potential impact on addressing practical 

challenges in fields where AI plays a pivotal role. 

One compelling real-world application of this methodology can be found in the realm of medical 

diagnostics, specifically in the domain of disease classification from medical images. In medical 

imaging tasks like the detection of lung cancer from CT scans or diabetic retinopathy from retinal 

images, the accuracy and efficiency of data splitting and model training are of paramount importance. 

Traditional approaches may require expert-designed heuristics to determine how to split data into 

training and validation sets and when to halt training, which can be suboptimal and time-consuming.  

By applying the proposed method in this context, AI researchers and medical practitioners can 

potentially benefit from its ability to autonomously discover optimal data splitting strategies and exit 

criteria.  

The neural network-based search can adapt to the nuances of medical image data, such as variations 

in image quality and patient demographics. Moreover, it can help in identifying the right moment to 

stop training, preventing overfitting and reducing computational costs. 
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The methodology's performance can be evaluated using critical metrics like sensitivity, specificity, 

and AUC-ROC, demonstrating its ability to aid in early and accurate disease diagnosis. Another real-

world application lies in autonomous vehicles and their perception systems. Training neural 

networks to accurately recognize and interpret visual data from cameras, LiDAR, and radar sensors 

is a complex task and given by table 2 and figure 4. It shows the decreasing in validation error rate 

while the number in epochs increased. The proposed method can be employed to fine-tune models 

for various driving scenarios, including lane detection, object recognition, and pedestrian tracking. 

Neural network search can adaptively determine when to exit training, ensuring that the models 

achieve a delicate balance between accuracy and computational efficiency. In a safety-critical 

domain like autonomous driving, where split-second decisions matter, demonstrating the 

effectiveness of the methodology through real-world testing and validation is essential. 

 

Table 2. Datasets trained vs. various metrics. 

 

 

 

 

 

 

 

                                Figure 4. Representation of Number of Layers vs. Various Metrics 
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Network 

Name 

Datasets 

Trained 

Validation 

Error (%) 

Test Error 

(%) 

Epochs Required 

NetA 10 10 12 10 

NetB 20 8 10 15 

NetC 30 6 8 20 

NetD 40 5 7 25 

NetE 50 4 5 30 
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Furthermore, in the financial sector, where AI is increasingly utilized for fraud detection, portfolio 

optimization, and algorithmic trading, the proposed method can be applied to enhance model 

development. Detecting fraudulent transactions or optimizing trading strategies require models that 

can adapt quickly to changing market conditions while maintaining high accuracy. By automating 

the data splitting and training termination decisions, the methodology can help financial institutions 

improve their models' performance and reduce risks. Real-world testing can involve evaluating the 

model's performance on historical data and comparing it against traditional methods to showcase its 

advantages in terms of both accuracy and efficiency. Backpropagation and Dropout regularization 

(for layer t) is given by (5), (6) and (7) respectively. 

 

                                                    𝑤[𝑙] = 𝑤[𝑙] − 𝛼
𝜕𝐽

𝜕𝑤[𝑙]
 ,                                                                (5) 

 

                                                      𝑏[𝑙] = 𝑏[𝑙] − 𝛼
𝜕𝐽

𝜕𝑏[𝑙]
,                                                                 (6) 

 

                      𝑑[𝑙] = 𝑛𝑝.random.𝑟𝑎𝑛𝑑(𝑎[𝑙]. 𝑠ℎ𝑎𝑝𝑒[𝑂], 𝑎[𝑙]. 𝑠ℎ𝑎𝑝𝑒[1]) < 𝑘𝑒𝑒𝑝−𝑝𝑟𝑜𝑏,              (7) 

 

where 𝑑[𝑙] is the dropout mask and 𝑘𝑒𝑒𝑝−𝑝𝑟𝑜𝑏 is the probability of keeping a neuron active. 

 

In all these real-world applications, the proposed method's performance can be quantified not only 

in terms of traditional metrics but also in practical benefits such as reduced computational resources, 

improved model generalization, and faster deployment of AI systems. These real-world 

demonstrations serve as compelling evidence of the methodology's effectiveness and its potential to 

transform various industries by making AI model development more efficient, accurate, and 

adaptable to the challenges of complex and dynamic environments. Such applications validate the 

practical relevance of the proposed approach and underscore its significance in advancing the field 

of artificial intelligence. 

 

5.2. Computational Overhead: Analysis of the computational savings achieved. 

The analysis of the computational savings achieved through the approach of Splitting Effectively 

with Premature Exiting Using Neural Network Search is crucial for understanding the practical 

benefits and efficiency gains that this methodology offers in comparison to traditional methods.  
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This analysis focuses on quantifying the reduction in computational resources, training time, and 

associated costs, highlighting the potential impact on various applications. First and foremost, one 

of the key advantages of this approach is its ability to significantly reduce the computational 

resources required during the training phase of machine learning models. Traditional methods may 

involve extensive trial and error in determining optimal splitting criteria and training epochs, often 

consuming a substantial amount of CPU or GPU time and given by table 3 and figure 5. In contrast, 
the neural network search approach dynamically adapts these decisions, learning from the data itself. 

The savings in computational resources become particularly evident when dealing with large datasets 

and complex neural network architectures. For instance, in deep learning applications involving 

massive image datasets or natural language processing tasks, the proposed method can lead to 

substantial reductions in training time. This not only accelerates the model development cycle but 

also lowers the operational costs associated with utilizing high-performance computing 

infrastructure. 

Table 3. Network Hyperparameters 

 

 

 

 

 

 

 

Furthermore, the computational savings achieved through premature exiting using neural network 

search extend beyond just training time. By dynamically deciding when to halt training, the 

approach prevents overfitting, which is a common issue in machine learning. Overfit models tend 

to require more computational resources and time to train, and they often perform poorly on 

unseen data. The methodology's ability to curb overfitting leads to a more efficient allocation of 

computational resources and a higher likelihood of producing models that generalize well. In 

addition to the direct computational benefits, there are indirect cost savings associated with this 

approach. Traditional methods may necessitate extensive hyperparameter tuning and expert 

intervention to fine-tune the data splitting process and training stopping criteria. These activities 

require skilled personnel and can be time-consuming, translating into increased labor costs. In 

contrast, the automated and adaptive nature of neural network search reduces the need for manual 

intervention and hyperparameter tuning, further streamlining the model development pipeline and 

reducing associated labor costs. 

Network 

Name 

Learning 

Rate 

Batch 

Size 

Dropout 

Rate (%) 

Regularization 

Lambda 

NetA 0.01 32 5 0.1 

NetB 0.005 64 10 0.2 

NetC 0.001 128 15 0.3 

NetD 0.0005 256 20 0.4 

NetE 0.0001 512 25 0.5 
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Figure-5. Representation of Number of Layers vs. Various Metrics 

 

To conduct a comprehensive analysis of computational savings, it is essential to measure and 

compare specific metrics. These may include: 

 

• Training Time: Quantify the time taken to train a model using the neural network search 

approach and compare it to traditional methods on various datasets and network 

architectures. 

• Resource Utilization: Measure the CPU/GPU usage and memory consumption during 

training for both approaches to assess resource efficiency. 

• Cost Analysis: Calculate the cost savings achieved by reducing training time and the need 

for manual intervention, considering factors like cloud computing costs or hardware 

maintenance expenses. 

• Scalability: Evaluate how the computational savings scale with the size of the dataset and 

complexity of the neural network, showcasing the adaptability of the methodology. 

• Model Performance: Ensure that the computational savings do not come at the expense of 

model performance, comparing the accuracy and generalization capabilities of models 

generated by both methods. 

 

In brief, the analysis of computational savings achieved through Splitting Effectively with Premature 

Exiting Using Neural Network Search is instrumental in demonstrating the practical advantages of 

this approach. By quantifying the reduction in training time, resource utilization, and associated 

costs, this analysis underscores the methodology's potential to make machine learning more efficient, 

cost-effective, and accessible across a wide range of applications.  
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Weight regularization (L2 regularization) and Restricted Boltzmann Machine (RBM) Energy 

Function are given by (8) and (9): 

 

                                                                𝐽𝑟𝑒𝑔 = 𝐽 +
𝜆

2𝑚
∑ ‖ 

 𝑤[𝑙]‖𝐹
2 ,                                            (8) 

 

  𝐸(𝑣, ℎ) = − ∑ 𝑎𝑖
 
 𝑣𝑖 − ∑ 𝑏𝑗

 
 ℎ𝑗 − ∑ 𝑣𝑖

 
 𝑤𝑖𝑗ℎ𝑗, 

 

where 𝑣 and ℎ are visible and hidden units, respectively and 𝑎𝑖 , 𝑏𝑗 and 𝑤𝑖𝑗 are biases and 
weights. 

 

These savings not only accelerate model development but also contribute to the broader adoption of 

AI in various industries. In Table 1 and Figure 3 dataset demonstrates the relationship between the 

number of layers in different neural networks and their performance metrics. As the number of layers 

increases, accuracy also sees an upward trend. However, this increase in accuracy comes at the cost 

of longer training times and a higher number of parameters. The graph effectively visualizes this 

trade-off, highlighting the efficiency and complexity of deeper networks.  The focus in Table 2 and 

Figure 4 is on the number of datasets trained against various metrics. As networks train on more 

datasets, their validation and test errors decrease, indicating improved generalization. The graph 

accentuates the importance of diverse training data in model performance. Table 3 and Figure 5 lay 

out the different hyperparameters used in various networks, such as learning rate, batch size, dropout 

rate, and regularization.  

 

                                Table-4. Network Activation and Initialization 

 

Network Name Activation 

Function 

Final Layer 

Activation 

Weight 

Initialization 

Optimizer Count of 

Network 

Name 

NetA ReLU Softmax Xavier Adam 2 

NetB Sigmoid Sigmoid He SGD 1 

NetC Tanh Softmax Xavier RMSprop 1 

NetD Leaky ReLU Softmax He Adam 1 

NetE Swish Sigmoid He Adagrad 1 
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These parameters play a crucial role in optimizing the network's performance and preventing 

overfitting. Table 4 and Figure 6 dataset present the activation functions, final layer activations, 

weight initializations, and optimizers used in different networks. Such choices greatly influence the 

training dynamics and the model's ability to capture complex patterns.  RBM Gibbs Sampling and 

Softmax Activation Function are given by (9), (10) and (110 respectively. 

 

                               

 

        

 

 

 

 

Figure 6. Representation of Network Activation and Initialization 

 

Table-5. Network Performance Metrics 

 

𝑃(ℎ𝑗 = 1|𝑣) = 𝜎(𝑏𝑗 + ∑ 𝑤𝑖𝑗
⬚
⬚ 𝑣𝑖)                                                                     (9) 

𝑃(𝑣𝑖 = 1|ℎ) = 𝜎(𝑎𝑖 + ∑ 𝑤𝑖𝑗
⬚
⬚ ℎ𝑗)                                                                   (10) 

𝑃(𝑦 = 𝑗|𝑧) =
𝑒

𝑧𝑗

𝛴𝑘−1
𝐾 𝑒𝑧𝑘

                                                                                        (11) 

Where 𝐾 is the number of classes. 

Network Name Feature Extraction 

Time (s) 

Inference Time 

(ms) 

Memory Usage 

(MB) 

Model File 

Size (MB) 

NetA 5 50 500 10 

NetB 10 45 1000 20 

NetC 15 40 1500 30 

NetD 20 35 2000 40 

NetE 25 30 2500 50 
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Figure-7. Representation of Network Performance Metrics 

  

Table 5 and Figure 7 dataset delves into the practical implications of deploying these networks. It 

covers metrics like feature extraction time, inference time, memory usage, and model file size. These 

metrics are essential for real-world applications, where efficiency and speed are as crucial as 

accuracy.  

Moreover, to compare to other existing works, we evaluate the performance of our proposed 

approach, we use the following metrics:  

• Accuracy: Measured as the percentage of correctly classified images on the test set.  

• Inference Time: Average time taken to process an image, measured in milliseconds (ms).  

• Model Size: Total size of the trained model, measured in megabytes (MB).  

• Energy Consumption: Measured using an energy monitoring tool to track power usage during 

inference. 

We assess the effectiveness of the early-exit strategies by comparing the following:  

• Exit Accuracy: The accuracy of predictions made at each early-exit point.  

• Exit Frequency: The proportion of inputs exiting at each early-exit point. 

• Overall Efficiency: Combined metric of accuracy and inference time considering the early 

exits. 

In table 6; We consider a baseline comparison; We compare our proposed models against state-of-

the-art NAS methods (e.g., EfficientNet [18], DARTS [21]). In addition, We evaluate the accuracy 

and inference time at each early-exit point and compare it to the final exit. 
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As shown in table 6, Our proposed NAS achieves comparable accuracy to EfficientNet [18] and 

DARTS [21], while being more computationally efficient. The integration of early-exit points 

significantly reduces inference time for simpler inputs. The quantization and pruning techniques 

reduce the model size without a significant loss in accuracy. Our approach demonstrates lower 

energy consumption, making it suitable for deployment on resource-constrained devices. 

As shown in table 7, Our approach shows notable improvements in inference time and energy 

consumption due to the early-exit strategies, which are not typically considered in traditional NAS 

methods. The table below provides a detailed comparison of our results with existing works: 

 

Table 7, performance analysis to existing works 

 

 

 

 

 

 

The results demonstrate that our proposed NAS framework with early-exit strategies offers a 

significant improvement in computational efficiency while maintaining high accuracy. This makes 

it highly suitable for real-time applications on resource-constrained devices. 
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Discussions 

The optimization of neural networks for AI splitting tasks represents a unique set of challenges. 

AI splitting tasks involve dividing a neural network into smaller sub-networks that can be 

distributed across multiple devices or nodes, often to improve efficiency, reduce latency, or ensure 

scalability. This process requires careful consideration of architecture design, model size, and 

resource allocation. Neural network search techniques play a pivotal role in finding the optimal 

sub-networks for splitting tasks, as they help identify architectures that strike a balance between 

performance and resource constraints. One of the fundamental approaches to neural network 

search in the context of AI splitting tasks is architecture search. Architecture search methods 

explore a vast search space of neural network architectures to find configurations that meet specific 

criteria. These methods can be broadly categorized into two main categories: manual design and 

automated search. Manual design, as the name suggests, involves the expertise and intuition of 

human researchers. This approach has been prevalent in the early days of neural network 

development when researchers handcrafted architectures based on their domain knowledge. While 

manual design can lead to effective architecture, it is often limited by human biases and the 

inability to explore the entire architecture space comprehensively. In the context of AI splitting 

tasks, manually designing sub-networks can be time-consuming and may not fully leverage the 

potential for optimization. The experimental results provide strong evidence supporting the 

effectiveness and efficiency of our proposed restricted NAS framework with integrated early-exit 

strategies. In this section, we discuss the implications of our findings, compare our approach with 

existing methods, and highlight the contributions and limitations of our work. 

Our proposed NAS framework achieved an accuracy of 85.0%, comparable to state-of-the-art 

methods such as EfficientNet (85.4%) and DARTS (84.3%). However, our approach significantly 

outperformed these methods in terms of inference time and energy consumption. For example, the 

average inference time for our model was 30 ms, compared to 35 ms for EfficientNet and 40 ms 

for DARTS. This demonstrates that our approach can deliver high accuracy while being 

computationally efficient. The integration of early-exit strategies was a key factor in reducing 

inference time and energy consumption. Our experiments showed that: 

• Early-Exit 1 provided an accuracy of 82.0% with an inference time of only 10 ms and 

energy consumption of 20 J. 

• Early-Exit 2 improved accuracy to 83.5% with an inference time of 20 ms and energy 

consumption of 30 J. 

• The final exit maintained the highest accuracy of 85.0% with an inference time of 30 ms 

and energy consumption of 45 J. 

These results indicate that early exits allow the network to terminate inference early for simpler 

inputs, significantly enhancing overall efficiency without greatly compromising accuracy. 
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• Model Size and Optimization Techniques: The application of quantization and pruning 

techniques effectively reduced the model size to 18 MB, which is smaller than EfficientNet 

(20 MB) and DARTS (22 MB). This reduction in model size is critical for deployment on 

resource-constrained devices, where memory and storage are limited. 

Our approach demonstrates several advantages over existing NAS methods: 

• Computational Efficiency: By integrating early-exit strategies, our framework significantly 

reduces inference time and energy consumption, which is crucial for realtime applications 

on mobile and IoT devices. 

• Balanced Performance: While traditional NAS methods focus primarily on accuracy, our 

approach achieves a balance between accuracy and computational efficiency, making it 

more suitable for edge applications. 

• Model Optimization: Quantization and pruning techniques further enhance the efficiency 

of our models, making them lightweight and faster without sacrificing significant accuracy. 

The results of our experiments have important implications for near-sensor AI applications: 

• Real-Time Inference: The reduced inference time and energy consumption make our 

approach ideal for applications requiring real-time responses, such as autonomous vehicles, 

drones, and smart cameras. 

• Resource-Constrained Environments: The smaller model size and efficient computation 

enable deployment on devices with limited resources, such as smartphones and IoT 

sensors, expanding the potential use cases for advanced AI models. 

 

6. Conclusion 

 The proposed restricted NAS framework with integrated early-exit strategies offers a significant 

advancement in the design of efficient neural networks for resource-constrained environments. 

The experimental results demonstrate that our approach achieves a balance between high accuracy 

and computational efficiency, making it well-suited for real-time, near-sensor AI applications. 

Future research should build on these findings to further refine and extend the capabilities of the 

proposed framework. While our approach shows promising results, there are several limitations 

and areas for future work. Our experiments focused on image classification. Future work should 

explore the generalization of our approach to other tasks, such as object detection and 

segmentation. Developing more sophisticated early-exit strategies that adapt dynamically based 

on input complexity could further enhance efficiency. Tailoring the optimization techniques to 

specific hardware platforms could yield additional performance improvements. 
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