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Abstract

In this study, we examine Quasi bi-slant conformal submersions originating from a Kenmotsu
manifold, focusing on the vertical Reeb vector field £. Initially, we explore the integrability
conditions for the distributions defined by quasi-bi-slant submersions. Furthermore, we delve
into the geometry of the associated leaves. The research concludes by presenting two intriguing
observations regarding the pluriharmonicity of Quasi Bi-Slant Conformal Submersions and includes

several non-trivial examples of such submersions.
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1 Introduction

Immersions and submersions play crucial roles in differential geometry, with slant submersions
being a particularly intriguing subject in the fields of differential, complex, and contact geome-
try. The study of Riemannian submersions between Riemannian manifolds was first explored by
O’Neill [24] and Gray [12], independently, and subsequently led to investigations of Riemannian
submersions between almost Hermitian manifolds, known as almost Hermitian submersions, by
Watson in 1976 [38]. Riemannian submersions have many applications in mathematics and physics,
especially in Yang-Mills theory ([7], [39]) and Kaluza-Klein theory ([18], [22]).

Semi-invariant submersions, a generalization of holomorphic submersions and anti-invariant
submersions, were introduced by Sahin in 2013 [32]. In 2016, Tatsan, Sahin, and Yanan studied
hemi-slant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds,
and presented several decomposition theorems for them [37]. R. Prasad etal. further examined quasi
bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds [26], as
well as from Kenmotsu manifolds [27], which represents a step forward in the study of Riemannian
submersions.

Since then, many authors have explored different types of Riemannian submersions, including
anti-invariant submersions ([4], [31]), slant submersions [10], [33], semi-slant submersions ([16],
[25]), and hemi-slant submersions ([36], [1]), from both almost Hermitian manifolds and almost
contact metric manifolds. These studies have greatly expanded our understanding of the geometrical
structures of Riemannian manifolds.

The concept of almost contact Riemannian submersions from almost contact manifold was
introduced by Chinea in [8]. Chinea also examined the fibre space, base space and total space using
a differential geometric perspective. To generalize Riemannian submersions, Gundmundsson
and Wood [14, 15] presented horizontally conformal submersion, defined as: Let (M), g;) and
(M>,g>) be two Riemannian manifolds of dimension m; and mj, respectively. A smooth map
J:(My,g1) — (My,g>) is called a horizontally conformal submersion, if there is a positive function
A such that

A%g1(X1,X2) = g2(J. X1, 0. Xa), (L.1)

for all X1,X, € I'(kerJ )L. Thus, Riemannian submersion is a particular horizontally conformal
submersion with A = 1. Later on, Fuglede [13] and Ishihara [20] separately studied horizontally
conformal submersions. Additionally various other kind of submersions such as, conformal slant
submersions [3], conformal anti-invariant submersions [34], conformal semi-slant submersions
[2], conformal semi-invariant submersions [5] and conformal anti-invariant submersions [27] have
been studied by Akyol and Sahin and R. Prasad et al [28]. Furthermore, Shuaib and Fatima
recently explored conformal hemi-slant Riemannian submersions from almost product manifolds

onto Riemannian manifolds [35].
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In this paper, we study quasi bi-slant conformal submersions from Kenmotsu manifold onto
a Riemannian manifold considering the Reeb vector field & vertical. This paper is divided into
six sections. Section 2 contains definitions of almost contact metric manifolds and, in particular,
Kenmotsu manifolds. In section 3, fundamental results for quasi bi-slant conformal submersion
are investigated, which are necessary our main results. The conditions of integrability and totally
geodesicness of distributions are explored in Section 4. Section 5 provides some condition under
which a Riemannian submersion becomes totally geodesic as well as some decomposition theorems

for quasi bi-slant conformal submersion are obtained. The last section discusses @-pluriharmonicity.

Note: Throughout the paper, we will consider abbreviations as follows:
Riemannian submersion- RS, Riemannian Manifold- RM, Almost contact metric manifold-ACM
manifold, Quasi bi-slant conformal submersion- 2%.7% .7, gradient- G.

2 Preliminaries

Let M be a (2n+ 1)-dimensional almost contact manifold with almost contact structures (¢,&, 1),

where a (1, 1) tensor field ¢, a vector field £ and a 1-form 7 satisfying

0 =—-I1+n®E, $E=0, nop=0, (&) =1, 2.2)

where [ is the identity tensor. The almost contact structure is said to be normal if N +dn ® & =0,
where N is the Nijenhuis tensor of ¢. Suppose that a Riemannian metric tensor g is given in M and

satisfies the condition

g(0U.9V) =g(U.V)=n(0)n(V), n(U) =g(U.¢&). (2.3)

Then (¢, &, n, g)-structure is called an almost contact metric structure. Define a tensor field ® of
type (0,2) by ®(X,Y) = g(¢X,Y). If dn = P, then an almost contact metric structure is said to be
normal contact metric structure. Let @ be the fundamental 2-form on M, i.e, ®(U,V) = g(U, ¢V).
If ® = dn, M is said to be a contact manifold. If £ is a Killing vector field with respect to g, the
contact metric structure is called a K-contact structure.

S.Tanno [30], who categorized connected, almost contact metric manifolds with the largest
automorphism groups. The sectional curvature of a plane section containing & for such a manifold
is a constant c. This classification includes classes of warped products with ¢ < 0is R x ;C". The

tensorial equation of these manifolds are:

(V50)V =g(oU,V)E—n(V)oU. (2.4)
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Kenmotsu [21], investigated a few basic differential geometric features of these spaces, giving rise

to the name Kenmotsu manifolds. It is also apparent on a Kenmotsu manifold M that
Vo =—90U=U-n(0), (2.5)
The covariant derivative of ¢ is defined by
(Vg,0)Vi =V, 0Vi— oV Vi, (2.6)

for any vector fields U,V € I'(TM). Now we outline conformal submersion and examine several

relevant results that assist us attain our major goals.

Definition 2.1 [6] Let J be a Riemannian submersion (RS) from an ACM manifold (B1,¢,£,1,g1)
onto a Riemannian manifold (RM) (B, g>). Then J is called a horizontally conformal submersion,

if there is a positive function A such that

~ o~ 1 ~ ~
gl(U17V1) = ﬁgZ(J*UhJ*VI)? (27)

for any (71,‘71 € [(kerJ,)*:. It is obvious that every RS is a particularly horizontally conformal

submersion with A = 1.

LetJ: (B1,0,E,1,81) — (B2, g2) be aRS. A vector field X on B; is called a basic vector field
if X € I'(kerJ,) L and J-related with a vector field X on B, i.e J,(X(q)) = XJ(q) for g € B).
The formulas provide the two (1,2) tensor fields .7 and ./ by O’Neill are

@{ElFl = %V(%ﬂEl VF + VV%EI JCF, (2.8)

IeFi1 = IOV yg, VI +VVyg JOF, (2.9)

forany E1,F; € T(TBy) and V is Levi-Civita connection of g;. Note thataRS J : (B1,¢,&,1,g1) —
(B3, g2) has totally geodesic fibers if and only if .7 vanishes identically. From equations (2.8) and

(2.9), we can deduce

Vo Vi=T5 Vi+ 7V V) (2.10)
Vo X1 =Ty X1+ 45 X (2.11)
Vi U = o4 Ui+ 11V U) (2.12)
VY1 =V Y+ V) (2.13)

for any vector fields U, V; € T'(kerJ,) and X,,Y) € T'(kerJ,)* [11].
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It is obvious that .7 and .o/ are skew-symmetric, that is
g(ARE\,F) = —g(E1, 9% F),8(FHE, F1) = —g(E1, T F1), (2.14)

for any vector fields E1, Fy € ['(T,B,).

Definition 2.2 A horizontally conformally submersion J : By — By is called horizontally homothetic
if the gradient (G) of its dilation A is vertical, i.e.,

H(GA) =0, (2.15)

at p € TM, where H is the complement orthogonal distribution to v = kerJ, in I'(T,M).

The second fundamental form of smooth map J is provided by the formula
(VI (U, V) = V{71J*‘71 — L.V Vi, (2.16)

and the map be totally geodesic if (V.J,)(U;,V)) = 0 for all Uy, V) € I'(T,M) where V and VJ, are

Levi-Civita and pullback connections.

Lemma 2.1 Let J : B| — B; be a horizontal conformal submersion. Then, we have
(i) (VI)(X1,Y)) = X1 (InA) ] (Y1) + Y1 (InA) (X)) — g1 (X1, Y1 ). (grad In),
(ii) (V1)U V1) = —Ju(T5 V),
(iii) (VJ.)(X1,01) = =J.(Vg O1) = =J(g O1)

for any horizontal vector fields X 1, ?1 and vertical vector fields U 1, \71 [6].

3 Quasi bi-slant conformal submersions

Definition 3.1 Let (By,¢,£.1,81) be a ACM manifold and (B,,g>) a Riemannian manifold. A RS
J : By — B, is called quasi bi-slant conformal submersion (2%.7€ .7 ) if there exists mutually
orthogonal distributions ©, D¢, and D¢, withkerJ, =D Do, © Dy, where, ® is invariant under
0. ie, 0D =D, for the slant distributions §Dg, 1 Dy , 0D, L Dy, and for any non-zero vector
field V; € (De,)p;» Pi € Bi the angle 6; between (Dg,)p,, and (])\Z is constant and independent of the
choice of the point p; and ‘71 € (Dg,)p, for i = 1,2, where 0 and 6, are called the slant angles of

submersion.

If we suppose my, my and mj3 are the dimensions of ©, Dy, and Dy, respectively, then we have the

following:
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(1) If my #0, my = 0 and m3 = 0, then J is an invariant submersion.

(i) Ifmy #0,mp #£0,0< 0; < % and m3 = 0, then J is a proper semi-slant submersion.
(iii) Ifm; =0,my=0and m3#0, 0< 6, < %, then J is a slant submersion with slant angle 6.
(iv) If m; =0,my #0, 0< 6y < F and m3 # 0,6, = 7,then J proper hemi-slant submersion.

v) Ifm;=0,my#0, 0<0; < g andmsz #0, 0< 6, < % then J is proper bi-slant submersion
with slant angles 0; and 6,.

(vi) If my #0,my #0, 0<6; <Fandm3 #0, 0< 6, <%, then J is proper quasi bi-slant

submersion with slant angles 6; and 6,. ”

Let J be a 24.9% .7 from an ACM manifold (By,¢,&,1n,g1) onto a RM (B,,g>). Then, for
any U € (kerJ,), we have
U=PU+PU+PU (3.17)

where Py, P, and P; are the projections morphism onto ®,D¢_, and Dg,. Now, for any Uec (kerl.),
we have
oU = oU + xU (3.18)

where wU € ['(kerJ,) and yU € I'(kerJ,)*. From equations (3.17) and (3.18), we have

oU =¢(PU) +¢(PU) +¢(Ps0)

=0(PO)+x(PiU)+o(PU) + x(PU) + o(PsU) + x(PsU).

< S

Since ¢ =D and y(P,U) = 0, we have
oU = o(PU) + o(PU) +x(PU) + o(PU) + 2 (PU).
Hence we have the decomposition as :
¢ (ker],) = 0D B 0Dy, P 0Dg, DX Doy, B YD, . (3.19)
From equations (3.19), we have the following decomposition
(kerl.)" = xDe, © XD, D, (3.20)

where p is the orthogonal complement to YD, ® x Dy, in (kerJ,)" such that u = (pu)d < & >

and U is invariant with respect to ¢. Now, for any Xe [(kerJ,)*, we have
0X =X +nX (3.21)
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where X € T'(kerJ,) and nX € I'(kerlJ,)*.

Lemma 3.1 Let (B1,¢,&,m,21) be an ACM manifold and (By,g,) be a RM. If J : By — B; is a
9RB.SEC.S, then we have

—U+n(0)¢é = 0?U +1xU, xoU +nyU =0,

—X = ytX +n*X, otX +tnX =0,
for U € T(kerJ,) and X € T(kerJ,)*.

Proof. On using equations (2.2), (3.18) and (3.21), we get the desired results.  Since

J:By — By is a 2%8.7%.7, Then let us provide some helpful findings that will be utilise
throughout the paper.

Lemma 3.2 Let J be a 28.9€.7 from an ACM manifold (By,9,E,1,g1) onto a RM (B3, g2),
then we have

(i) U = —cos26; ﬁ
(i) g1(@U,@V) = cos® 6, g1(U,V),
(iii) g(xU,xV) = sin® 6181(U,V),
for any vector fields U,V € I['(Dg,).

Lemma 3.3 Let J be a 2%8.9€.7 from an ACM manifold (By,9,E,1,g1) onto a RM (B3, g2),
then we have

(i) 0*Z = —0052622
(ii) g1(WZ, W) = cos?6,81(Z,W),
(iii) g1(xZ, W) = sin 6281(Z,W),
for any vector fields Z,W € T'(D 0,)-

Proof. The proof of the preceding Lemmas is identical to the proof of Theorem (2.2) of [9].
As a result, we omit the proofs.

Let us suppose that (B,,g>) be a Riemannian manifold and (B, ¢,£,1,g1) be a Kenmotsu

manifold. We now analyse how the Kenmotsu structure on B influences the tensor fields .7 and
o of QBSC S J: (B1,9,8,1,81) = (B2,82).
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Lemma 3.4 Let J be a 2%8.€.7 from Kenmotsu manifold (By,9,E,1,g1) onto a RM (B3, g2),

then we have

JZ/)?H?—I-“//V)?I? = t%V§?+w£f§?+g1 ((P)/(\,/Y\)é (3.22)
HNonY + egtY =n VY + yolcY (3.23)

YV @V + e yV =1V + 0¥ ViV +g1(1X,0)E —n (U)X (3.24)
@V + AV GxV =netgV + V' VgV —n(U)nX (3.25)
VVotX + TonX = 0T X +14VX + g1(X, V)& (3.26)
TotX + HVonX = x ToX +nAVyX (3.27)

YV0V + T qV — 0V V5V =195V +1(00,V)E — (V) 0l (3.28)
TV + AV 54V =nTV + x ¥ VgV —n(V)xU, (3.29)

for any vector fields U,V € T'(kerJ,) and X,Y € I'(kerJ,)*.

Proof. From (3.21), (2.13) and (2.6), we obtained the conditions (3.22) and (3.23). Again
using equations (3.18), (3.21), (2.10)-(2.13) and (2.6), finish he result. We will now go through
some key conclusions that can be utilized to examine the geometry of 2%8.9%.% J : B; — Bs.
From the direct calculations, we can conclude the following:

(Vo)V =7Vi0V - 0¥ ViV (3.30)
(Vax)V =AVgxV —x VgV (3.31)

(V)Y = V'Vt —t VY (3.32)
(Ven)Y = AV gnY —nitV5Y, (3.33)

for any vector fields U,V € I'(kerJ,) and X, Y € I'(kerJ,)*.

Lemma 3.5 Let (B1,0,£,1,g1) be a Kenmotsu manifold and (B,,g>) be a RM. If J : By — By is
a 28.S€.7, then we have

for all vector fields U,V € U(kerlJ,) and X,Y € T(kerJ,)*.
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Proof. From some basic facts and taking account the fact from equations (2.6), (2.10)-
(2.13) and equations (3.30)-(3.33), we can obtained the results. The tensor fields @ and J, if they
are parallel with regard to the connection V of By, then we obtain

tgﬁ‘/} = ﬁﬁxf/, nﬂﬁV = ﬁﬁwf/

for any vector fields U,V € I'(TB).

4 Integrability and totally geodesicness of distributions

Since (B1,9,&,1m,g1) stands for a Kenmotsu manifold and (B;,g;) for a Riemannian manifold
such that J : By — B, is a 2%.7%.. Three mutually orthogonal distributions, including an
invariant distribution ® and a pair of slant distributions g, and Dg,, are assured by the theory of
QRB.S€.. The integrability of slant distribution is assessed to begin the debate on distributions

integrability in the following manner.

Theorem 4.1 Let J be a 2%5. €. from Kenmotsu manifold (By,9,&,1,g1) onto a RM (B3, g2).
Then slant distribution D¢, is integrable if and only if

1 - AN A\
8=V LaVi+ Vg L Ur, L P2)}
1 ~ o~ ~ o~ ~
= 72 (VL) O aV) + (V1) (V1. 201), L. 2 PiZ)} (339

—gl(Vlewﬁl —Vﬁlxwﬂj) —81(%1%‘71 - %1Xl71,¢P12+ wP;Z),
forany U,V € ['(Dy,) and Z € T(D DDg, B <& >).

Proof. For all U}, V; € [(®g,) and Z € T(D © Dy, < & >) with using equations (2.3),
(2.6), (2.4) and (3.18), we get

~

21([01,V1],2) = g1(Vg, V1,02) +g1(V, 2V1,0Z) — g1(Vy, 001, $2)
—1(Vy 101, 92).

By using equations (2.6), (2.4) and (3.18), we have

~

21([01,V1),2) = —g1(Vg,0°V1,2) — &1(Vy x0V1,Z) + g1 (Vy, 0° U1, Z)
+81(V‘71%0)l71a2) +g1(Vl71%‘71,¢P12+ OPsZ + yPZ)
—gl(Vr/lXﬁl,(PPler WPsZ + xPsZ).
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Taking account the fact of Lemma 3.2 with equation (2.11), we get

~

g1([U,Vi],Z) = cos*0,g1([U1,V1],Z) +g1(vlewﬁl _ V,ylwah?)
+81 (7(71)(‘71 - %IXﬁl,Q)PlZ-l- COP3Z)
+g1(HV g xV1 = AV UL, APZ).

On using equation (2.7), formula (2.16) with Lemma 2.1, we finally get
sin*6121([U1,V1],2)
1 ~ o~ ~ ~ ~ ~
= 2 182((V) (U1, 2V1) L BsZ) + 82((V1) (Vi x Uh), L BZ)
+ 81 (17(71%‘71 - %176171, OPIZ+ 0PsZ) + g (Vlewa - Vﬁlxwvl,/z\)

1 ~ A~ ~
T3 (V5 2V =V 1 U1 X PsZ) -
The condition of integrability for D, can be determined in the same way, as shown below:

Theorem 4.2 Let J : (B1,0,&,1m,81) — (B2,82) be a 2B.5C ., where (B1,9,&,1m,21) a Ken-
motsu manifold and (B2, g2) a RM. Then slant distribution ®, is integrable if and only if

— (V1) 2, 27) — (V) V2, 202), . xPo2)}
=g (9‘72)5(0(72 - ﬂﬁzxw@,f) +g1 (902)5‘72 — 7‘72%(72, OPIZ+ wP,Z)
+ %{gx%g*x?z =V 1202, i X PZ)},
for any U, Vs € ['(De,) andZ € F(D®Dg, @ <& >).
Proof. On using equations (2.3), (2.4), (2.6) and (3.18), we have
21([02,V1],2) = &1(Vy, 002, Z) + 81(Vy, 2005, Z) — 81(V5,0°V2, Z)

— g1 (ngxw?z,f) + g1 (Vﬁ2%‘72 — V@%ﬁz, 0Z),

for any Uy, V> € T'(Dg,) and Z € T(D ® Dy, @® < & >). From equation (2.11) and Lemma 3.3, we
get

sin*021([U2,V1),Z) = g1 (T 2 0Us — Ty x 0V2, Z) + 1 (T 2V — Ty 2 U2, 9P Z+ 0P Z)
+81(«%”Vﬁ2%‘72 - «%”V@%ﬁz,lpzi)-
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Since J is 2%.7 %€ .7, using conformality condition with equations (2.7) and (2.16), we finally get
sin*6,1([02, V2], 2) = &1 (9\72%(0172 - %zxwffz,f) +81 (9[72%‘72 - 5‘72%(72, OP\Z+ 0PZ)
1 ~ o~ ~ ~ ~
+ o 182((VI) (U2, xV2) = (V1) (V2, X U2), X Pa2) }

1 ) e A
+ ﬁ{gz(vézf*%‘/z - VéZJ*XUz,J*%PQZ)}.

This completes the proof of the theorem.
Given that slant distributions and the invariant distribution are mutually orthogonal. This

inspired us to look into the prerequisites for the integrability of the invariant distribution .

Theorem 4.3 Let J : (B,0,&,1m,81) — (B2,82) be a 2B €., where (B1,9,E,1,81) a Ken-
motsu manifold and (B2,g2) a RM. Then the invariant distribution ® is integrable if and only

if

g1 (ﬂﬁwPﬂA/ — %wPlﬁ,xP22+ %P3W)

~ ~ ~ ~ (4.35)
=—g1 <7/Vﬁa)P1V — 7/V§(DP1U, b7+ COP3Z),
forany U,V eT(D) and Z e T(Dg, D, ® < & >).
Proof. For all U,V € T(®) and Z € [(Dg, ® Dy, ® < & >) with using equations (2.3),

(2.4), (2.10) and decomposition (3.17), we have
§1([U.V],.Z) = g1(V30P\V,9PZ+ §P3Z) — g1 (Vo 0P U, 9P, Z + $ PsZ).
On using equation (3.18), we finally have
81([U.V],Z) = g1(Tz0P\V — Fo0PU, Y PZ + xP3Z)
+81(V V0PV — V0P U,0PZ + 0P3Z).

This completes the proof of theorem.
After describing the necessary conditions for distributions integrability, we will move on to
the necessary and sufficient conditions that must also exist in order for distributions to be totally

geodesic. We begin by looking into the prerequisites and criteria for totally geodesic distributions.

Theorem 4.4 LetJ : (By,¢0,&,1m,81) — (B2,82) be 28.9%F. from a Kenmotsu manifold onto a
Riemannian manifold. (By,g). Then D is not defines totally geodesic foliation on B;.

Proof. Taking the vector fields Z , Ve ['(®) and since V and & are orthogonal, we have

g(VﬁV,g) = —g(V,Vaé)
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By considering equation (2.8), we get
§(VgV,8)=—¢(0.V).

ForU,V eT(D),g(U,V) #0, that s g(Vﬁv, &) # 0. Hence, the distribution is not totally geodesic.
Since, the invariant distribution is not defines totally geodesic foliation on By, therefore, we discuss
the geometry of leaf of distribution D& < & >.

Theorem 4.5 Let J : (B1,0,&,1m,81) — (B2,82) be a 2B.SC ., where (B1,9,E,1,81) a Ken-
motsu manifold and (B, g2) a RM. Then invariant distribution D@ < & > defines totally geodesic
foliation on By if and only if

(i) A28 {((VI)(U,9V),J:xZ)} = g1 (¥ V59V, 0Z)
(ii) A={g2((VL)(U,9V),JunX)} = g1 (¥ V5V 1X),
foranyU,V eT(D® < & >) and Z e T(Dg, ©Dy,),X € [(KerJ,)" .

Proof. For any Uve ['(®) and Ze ['(Dg, ®Dp,) with using equations (2.3), (2.4), (2.6)
and (3.18), we may write

On using the conformality of J with equation (2.7) and (2.16), we get
81(VgV,Z) = g1(V V5oV, 0Z) — 2 2 (VL) (U, 9V), )y Z).

On the other hand, using equations (2.3), (2.4), (2.6) with conformality of J with Xe F(KerJ*)i,

we finally have
21(VgV, X) = g1(V VoV 1X) = A 2g((V1) (U, 9V), JunX),
from which we get the desired result.

Theorem 4.6 LetJ : (B1,9,&,1m,81) — (Ba,82) be 2B.C . from a Kenmotsu manifold onto a
Riemannian manifold. (By,g>). Then Dy, is not defines totally geodesic foliation on B;.

Proof. Taking the vector fields X,Ye I'(Dp, ) and since Y and & are orthogonal, we have

g(VeY, &) = —g(Y,VE)
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By considering equation (2.8), we get
g(Vg¥.,8) = —g(X.Y).

For X,Y € ['(Dg,),8(X,Y) # 0, that is g(V)??,é) # 0. Hence, the distribution is not totally
geodesic.

In same manner, we can examine the geometry of leaves of Dg, & & as follows:

Theorem 4.7 Let J be a 2%8.€ .7 from Kenmotsu manifold (By,9,&,1,g1) onto a RM (B3, g>).
Then slant distribution Do, & & defines totally geodesic foliation on By if and only if

%gz(% APW Ty PsW)
= cos*01g, (VzPQVT/, U)—g (%X(L)Pzw, U)+g (%waQVT/, 0P 0) (4.36)
+81(TzxPW, 0PsU — %gz(wf*)(lpzwj),f*%ﬁ) —1(0Z,U)n(PW).
and
Ao (VELxoP, W, 1.X)} + 1 (PW)g1 ($Z,X)
= (VL) 220, 1.8)) — 5502(V1) (2 X @Fs ) Jon) @37)

+cos*0, g (V2P2W7X\) + g1 (%waQW, t)?) — gz(V%J*xa)PZW,J*n)?),
forany Z,W € T(Dg, ® E),U e (DD Dy,) and X € T(kerl,)*.
Proof. By using equations (2.3), (2.6), (2.4) and (3.18), we get
21(VzW,0) = g1 (Vo PW, 0 (PU + PsU)) — g1 (§Vz0P W, U),

for Z,W € T(Dg, &) and U € ['(D G Dy,) . Again using equations (2.3), (2.6), (2.4), (3.18),
(2.11) with Lemma 3.2, we may write

gl(Vzw, (/J\) = Coszelgl(VZI)zw, ﬁ) —g1 (%X&)Pzﬁ/, (/J\) —|—g1(<72)((1)P2W, ¢Plﬁ)

+ &1 (%){Pﬂx/, (1)P3ﬁ) + g1 (%V”Z\%PQW, XP36) — g1 (¢2, ﬁ)n (PQW).
Since, J is conformal, using Lemma 2.1 with equations (2.7) and (2.16), we have
g1(VoW,0) = cos*01g1(VzPW,U) — g1 (Zox 0PaW,U) + g1 (Tzx 0PW PO )
~ . 1 ~ ~
+81(TZx W, 0PU) — ﬁgz(V’ZJ*xPzW,J*x%W) (4.38)

1 . N . N
— ﬁgz((VJ*)(lpzW,Z)J*I%U) —g1(9Z,U)n(PW).
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On the other hand, for Z,W € I'(Dg, © &) and X € ['(kerJ, )", with using equations (2.3), (2.6),
(2.4) and (3.18), we get

~ A~

g1(VoW . X) = g1 (V0P W, 0X) + g1 (V2 W, 0X) + 1 (PW)g1 (02, X).
From Lemma 3.2 with equations (2.11) and (3.21), the above equation takes the form

gl(VZW,)/(\) = Coszelgl(Vszw,X\) — g1 (%szwPQVT/,)?) + T[(PzW)glw)/Z\?X\)
+81( T 0P X)) + g1 (V33 0P, W ,nX).
Since J is conformal and from equations (2.7) and (2.16), we have
g1 (Vzﬁ\/,)/(\) = c05291g1 (Vzpzﬁ/,)/(\) + g1 (ﬁzxa)PZW,t)?) — n(P2W)g1 (d)/Z\,)/(\)
1 AN A =~ 1 A~ ~
+ ﬁgz((VJ*)(xa)PzW,Z),J*X) — ﬁgZ(VJZJ*xa)PZW,J*X)

~ A ~ 1 ~ ~
= 728((V1) (x 0P W, Z),JnX) + ﬁgz(vjz]* XOPW  JnX),
from which we get the result.

Theorem 4.8 LetJ : (B1,9,&,1m,81) — (Ba,82) be 28 €. from a Kenmotsu manifold onto a
Riemannian manifold. (By,g>). Then Dy, is not defines totally geodesic foliation on B;.

Proof. Taking the vector fields X,Ye I'(Dp,) and since Y and & are orthogonal, we have
g(VgY &) = —g(Y,V3E)
By considering equation (2.8), we get
g(Vg¥.,8) = —g(X.Y).

For X,Y € ['(Dg,),8(X,Y) # 0, that is g(Vf?,é) # 0. Hence, the distribution is not totally
geodesic.
In the following theorem, we study the necessary and sufficient conditions for slant distribution

Dy, to be totally geodesic.

Theorem 4.9 Let J : (B1,0,E,1m,81) — (B2,82) be a 2B.5C., where (B1,9,&,1m,21) a Ken-
motsu manifold and (B,82) a RM. Then slant distribution ©¢,® < & > defines totally geodesic
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foliation on By if and only if

282(VRL AW 12 PsV)

= cos*0181(VzP W, V) — g1 (T @OP,W V) + g1 (T3 0PW 9PV (4.39)

S P . . _
+81(TZ W, 0PV — 582((V) (X2 W, 2), J:P3V) = 81(9Z,V )1 (P W).
and

A72{82(VJ2 *Xa)PﬂX/,J*?) - gZ(VJZ *?CwP3W7J*”?)} + n(P2W)gl ((b/Z\a?)
1 ~ PO ~ L
= 7282((VI)(Z, 2 0PW), J.Y) = 7582((V.) (Z, Y 0P W), JenY ) (4.40)

+ 05?081 (VoPsW,Y) + g1 (Tox @PsW 1Y ) +1(W)g1 (Z,1Y ),
forany Z,W € T(Dg,® < & >),V € [(D® Dy,) and ¥ € T(kerJ,)*.

Proof. The proof of above theorem is similar to the proof of Theorem 4.7.
Since, J is 2%8.7 %€ .7, having (kerJ,) and (kerJ, )" are vertical and horizontal distributions,
respectively. We now investigate the conditions under which distributions define totally geodesic

foliation on By. In terms of vertical distribution’s total geodesicness, we have

Theorem 4.10 Let J : (By,9,E,1M,81) — (B2,82) be a DBSEC.S, where (B1,¢,€,1m,21) a Ken-
motsu manifold and (B2, g2) a RM. Then kerlJ, defines totally geodesic foliation on B if and only
if
1 ~ ~ A
ﬁ{gz(VJﬁJ* XOPV + V5] xoPV, J.X)}

= gl(ﬂﬁPl\A/ +cos* 0, ﬂﬁP2\7 +cos29290P3\7,)?) +g1(9ﬁx\7,t)?)

1 N N N PN (4.41)
+ 2 182((V) (U, xoRV) = (V1)(U, x0PsV), J.X) }
1 ~ ~ o~ ~
+ ﬁ{gz(V{jf*XV —(VI)(U,xV),JunX)}.
forany U,V e T(kerJ,) and X € T(kerl,)*.
Proof. For any U,V € ['(kerJ,) and X € I'(kerJ,)* with using equations (2.3), (2.6), (2.4)

with decomposition (3.17), we get

g1(VgV.X) = g1(VgoPV,0X) +g1(V50PV . 0X) + g1 (V50 P5V , X).
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On using equation (3.18) with Lemma 3.2 and Lemma 3.3, we have

gl(V[;XA/,)?) gl(v P1V X)-l-COS 91g1(V P2 )-l- cos ngl(v P3V X)
+g1(V ﬁlsz,(PX)—g( %(UP‘A/)?) 13184 ﬁle3VaX)
+81(VgaPsV,9X) —n(PV)g1(xU, X).

From equations (2.10), (2.11) and (3.21), we may yields
81(V5V.X) = g1(T PV + cos* 0, Tz PV + cos* 6, T sV X))

—gl(%Vﬁwaz\A/+%Vﬁwa3\7,)?) +g1(9l7;(P2\7+ 9L7%P3{/\,t5(\)
+81(ANVGAPV + AV 5PV nX) =1 (PV)g1 (21U, X).

From decomposition (3.17), the above equation takes the form
81(V5V.X) = g1(T PV +cos*0, Tz PV + cos*6, TPV . X) + g1 (T 4V, tX)

— g1 (VG OPV + AV 53 0PsV X) + g1 (HV 51V . nX)
—n(PV)g1(xU,X).
Using the conformality of J with equations (2.7) and (2.16), we have
81(V5V.X) = g1(T PV + o501 Tz PV + cos* 6, TPV X) + g1 (T 4V, tX)
+ %{gz((VJ*)(ﬁ, X OPV) — (V1) (U, xoP;V),J.X)}
- %{ 22(VEL X OPV + V5L 0PV, J.X)}
t o ea(VAAT —(V1)(0,27), 1nR)}

-n(PV)g1(xU,X).

This completes the proof of the theorem.
Now we can discuss the geometry of the horizontal distribution’s leaves. The necessary
and sufficient conditions under which horizontal distribution totally geodesic foliation on B; are

presented in the following theorem.

Theorem 4.11 LetJ bea 2B.S €. from Kenmotsu manifold (By,9,E,1,g1) ontoa RM (B2, g3),.
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Then (kerlJ, )" defines totally geodesic foliation on By if and only if

1 e 1 A~
- &2(VgdanY  J.xZ) + ﬁgz(vg?J*Y,J* XOPZ)
= cos’ 01281 (JZ{??,PzZ) + cos’ 621 (%)?/Y\, P3Z)
+ g1 (VVit?, OP\Z)+ g (sszn?, 0P\ Z)+ g (ﬂ)?t?,xz)

+%gz()?(ln/l)J*nf/—i—nIA/(lnl)J*)?—g]()?,nl?)J*(Glnl),J*xZ)
1 ~ ~ o~ ~ ~ o~

—I—ﬁgz(X(lnl)J* +Y(InA)LX — g1 (X,Y)J.(GInA),J.x ©P:Z)

+%gz()/(\(lnl)J*?—k?(lnl)J*)?—g1()?,?)J*(Gln/l)J*xa)&Z)

1 ~
+ ﬁgz(vg?J*Y,J* AOP;Z)

forany X,Y € U(kerJ,)* and Z € T(kerlJ,).

Proof.

with decomposition (3.17), we get

81(V3Y.Z) = g1(V49Y 9P Z) + g1 (V0¥ , 0 PrZ) + 1 (V¢ 0Y 9 PsZ).
From equations (3.18) and (2.12) with Lemma 3.2, we have

1(V¢Y,2Z)

=g (/VV)?Z/Y\, a)P1Z) + 81 (,Qf’)?n?, a)PIZ) + 81 ((PV)?(])/Y\, (P(L)PzZ)

+ g1 (V}?Z‘?,XFEZ) + 81 (V)’(\H/Y\,XPZZ) + 81 (¢Vf¢?, (I)(DP3Z)
+81(VgtY , X PsZ) + g1 (VgnY , X PsZ) + g1 (HV onY + otg1Y , x P Z).

Since yP»Z + ¥ P3Z = xZ and with using the equations (3.18) and (2.13), we get
81 (V}?/Y\,Z\)
=g (’7/V§t?, (DPIZ) + g1 (észnfy\, (DP1Z) + g1 (527)?1‘?,)52)
+ g1 (e%ﬂv)?l’l/y\,XZ) — &1 (%Vg?,%(x)PzZ) — &1 (,%”Vg?,xa)&z)

+ cos’ 0, {gl (%g?,PzZ)} + cos’ 92{g1 (Jaf)?/Y\,P3Z)} + g1 (%an? + JZ%?Z‘/Y\, XPZZ)-
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From formula (2.7) and (2.16), which yields that
81 (V)/(\/Y\72\)
= g1(VVtY , 0P\ Z) +g1(HgnY , 0P\ Z) + g1 (H5tY , X Z)
1 bt 1 A~ A~
+ ﬁgg(Vf?J*nY,J*xZ) — 728((V1)(X,nY), .3 Z)
~ 1 ~ ~
_ ﬁgz(Vj?J*Y,J*xa)PQZ) + ﬁgz((VJ*)(X,Y),J*waZZ)
1 N 1 ~ o~
- ﬁgz(vg?J*Y,J*xw&Z) + 2382((VL)(X,Y), Ly oP:Z)
+ cos’ 0, {g1 (szffy\,P2Z)} + cos? 92{g1 (%X/Y\,P3Z)} + 81 (%Vfl’l/y\ + ﬂgt?,xsz).
Since J is conformal submersion, then we finally get
81 (V)?/Y\,/Z\)
= cos’ ;g (gng)?l?,PZZ) +cos? 6 g (d)?f’,%Z) +gi (,%”V)?nf/ + %ﬁt?, xsz)

~ -~ =~ 1
+ g1 (”//V)?ty + ﬂgnY, 0P\ Z)+ g (,!Zf)?tY,XZ) +

ﬁgz(V§J*?,J* XOP;Z)

1 ~ —~ ~ ~ ~ o~
+ ﬁgz(X(lnl)J*nY +nY(InA)J.X —g1(X,nY)J.(GlnA),J.xZ)
+ %gz(i\(lnl)h/\ +Y(In )X — g1 (X,Y)J.(GInA),J.x 0P, Z)
—l—%gz()?(ln?t).]*f’ FPInAVLK — g1 (R, P)L(GInA), Ly 0PsZ)

1 s 1 .
+ ﬁgz(VJ?J*nY,J*xZ) — ﬁgg(vg?J*Y,J*wazZ),

This completes the proof of theorem.

5 ¢-Pluriharmonicity of Quasi bi-slant Conformal £ - -Submersion

In [23], Y. Ohnita constructed J-pluriharminicity from a almost hermitian manifold. We expand
the idea of @-pluriharmonicity to almost contact metric manifolds in this section.

LetJ be a 28.7% . from Kenmotsu manifold (By,¢,&,m,g1) onto a RM (B3, g2) with slant
angles 0, and 6,. Then 2%.7% submersion is ¢-pluriharmonic, ©-¢@-pluriharmonic, D%-¢-
pluriharmonic, (D —©%)-¢ pluriharmonic (where i = 1,2), kerJ,-¢-pluriharmonic, (kerJ,)"-¢-

pluriharmonic and ((kerJ,)* — kerJ,)-¢-pluriharmonic if
(VI)(U,V) +(VJ)(9U,$V) =0, (5.43)

for any U,V € T(D), for any U,V € (@), for any U € ['(D),V € T(D%) (where i = 1,2), for
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any U,V e T(kerl,), for any U,V € ['(kerJ,)* and for any U € T'(kerJ,)*,V € T(kerJ,).
Theorem 5.1 Let J be a 2P8. €. from Kenmotsu manifold (By,9,&,1M,81) onto a RM (B2, g>)
with slant angles 0y and 6,. Suppose that J is D¢ -@-pluriharmonic. Then D¢, defines totally
geodesic foliation By if and only if
J. (X7 Uxa)VJrn,%”VwUxa)V) (%ﬁw\?+%vwﬁﬁ)
=cos” 01 (n T, 5V + X V'V (V) + VI 510V
—xU(In M) xV — xV(In ) JxU + g1 (xU, xV)J.(GIn )

forany U,V e T(Ds,).
Proof. For any U , Ve I'(®Dp, ) and since, J is D, -¢-pluriharmonic, then by using equation
(2.10) and (2.16), we have
0=(VL)(U,V)+ (V1) (9T, V)
L (VV) = —J(V wq)V) +V’ 5 1(9V)
= J*(szf coV+”I/V Aa)V+ T UxV+%”V UxV)
+ (VL) (U 2V) = V3 5T xV + V3 509V
+J*(¢Vw[7¢>a)V)
On using equations (3.18), (3.21) with Lemma 2.1 and Lemma 3.2, the above equation finally takes
the form
J(VgV) = —cos*0J(PT, 5V +nT, ;V+ 0¥V V+x ¥V V)
+J. (0T waV +x7 waV +P<%”V0)Uxa)v +n%VmwaV)
J*(JZ{ ~oV + ”f/V a)V+ T UxVJr%V UxV)

+xU(In )V +xV(n ) xU — gy (xU, xV)J, (gradIn L)
—VJA*)(V+V LOV.

from which we get the desired result.

Theorem 5.2 Let f be a 2B.7 €. from Kenmotsu manifold (B, ¢,E,1,g1) onto a RM (B, g>)
with slant angles 0y and 6,. Suppose that J is Dg,-@-pluriharmonic. Then D¢, defines totally
geodesic foliation By if and only if
J.(xT Zxa)W + n%VwawW) Js (dxiwﬁ/ + %”szxﬁ/)
=cos 921*(113 W +)(WV AW) +V/ AJ*d)VT/
—xZ(A)J YW — xW (In A xZ + g (X Z, xW)J. (gradIn 1)
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forany Z,W € T(Dg,).
Proof. Theorem 5.1 proof is the same to this theorem’s proof.

Theorem 5.3 Let f be a 2B.7€.7 from Kenmotsu manifold (B, ¢,E,m,g1) onto a RM (B, g>)

with slant angles 8 and 6,. Suppose that J is ((kerJ,)* — kerJ,)-@-pluriharmonic. Then the
following assertion are equivalent.

(i) The horizontal distribution (kerJ,)" defines totally geodesic foliation on Bj.

(ii) (cos*0) +cos’0:)J {nT P U+ x ¥V z0PU +ne coP U+ x V'V ;0P U}

+J*{%%§leizl7 +xﬂfngwa3ﬁ — %”V,;?Xp} + Vifj*wagﬁ + Vi}?J*wagﬁ
=J{nT30PU+x V'V 50PU +nd, 0PU + x4V ;0P U}
—~JAX T x 0P U +niN 53 0PU + x T x 0P3U +niV 5 x oP3U }
+nX(In )], x 0P U + y 0P, U(InA)J.nX — g, (nX, y 0P, U)J,(gradIn 1)
+nX(InA)J,x 0P3U + xoP3U (InA)J.nX — g, (nX, yoP3U)J,(gradIn )
+J.(V40) + Vi o xU +g1(PX,00)J,&.

for any X € T(kerJ,)* and U € T(kerJ.,)

Proof. For any X € [(kerJ,)* and U € T(kerl,), since J is ((kerJ.): — kerJ,)-o-
pluriharmonic, then by using (2.16), (3.18) and (3.21), we get

~ ~ ~ ~ ~ ¥ ~
J*(Vn)?%U) = —J*(Vl}?(l)U + Vt}?}(U + Vn}?a)U) —f—J*(V}?U) + Vq))?J*XU.
Taking account the fact from (2.2) and (2.11), we have

TV oxU) = —J(Tg2U + 7V 52U) + 1 (V5U) +V

+J {9V 200U} + 1. {9V so0U}.

P
ox XU

Now on using decomposition (3.17), Lemma 3.2, Lemma 3.3 with equations (3.18), we may yields

J*(Vn)?xﬁ) :J*{QDVD?COPlﬁ—COSZ 91¢Vﬁ?a)ﬁ — cos? 92¢>Vt§a)l7
+J*{¢Vn§a)Plﬁ — cos? 91¢Vn)?wl/]\ — cos? 62¢Vn§a)ﬁ
+J*{¢Vﬂ?wa2(7+(pVﬂ?waﬂ?+¢Vn§wazl7+¢Vn§xa)P3ﬁ}

. e ; e
—J(FV 5 xU) +J*(V§U)+V¢§J*xU.
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From equations (2.10)-(2.13) and after simple calculation, we may write

J*(Vn)?x(?) = —(cos*6; +c0s292)J*{nZ)?a)Pll7+X”VVt)?a)Pll?+n4zfn)?a)Pll7
+x”//Vn§a)Pll7} —J*{xﬂfngwazﬁ +x¢zfn§wa3l7 - %V[)?xﬁ}
+ 1 AnT 0P U+ 1 V'V c0P U +ndd, goP\U + y #V c0P U}
—JAxX T3 OPU +nV 5 x OPU + x T3 x 0OPsU +nt'V 5 x 0P3U }
—J(nAN sx 0P U +niN sxwPsU)+J(VU) +Vé§ xU.

Since J is conformal Riemannian submersion, the by using equations (2.16) and from Lemma 2.1,

we finally have

J(V oxU)

= —(c0s291 + coszez)J*{nﬂﬁ?a)Pll? —|—x”l/Vﬁ?a)P1l7 —i—n%)?a)Pll? +x“//Vn)?a)P117}
+J*{n9t§a)P|I7+x”f/tha)Pll7+m<zinfa)Pll7+x,%”Vn§coP1l7}
—J*{xﬂt}?wazﬁ +n<%”thxa)P2ﬁ+xﬁt§wa3ﬁ+n<%”Vﬁ?xa)P3l7}
+nX(InA)J,x 0P U + yoP,U(InA)J.nX — g, (nX, yoP,U)J,(gradIn )
+nX (InA)J,xoPsU + x oPsU(InA)J.nX — g1 (nX, x ©PsU)J,(gradIn )
—J*{x%}?xa)Pzﬁ +x%§wa3l7 - %Vﬁ?xﬁ}
+J(VoU) +V(JP§J*)((7 -V xOP,U -V xoP;U,

which completes the proof of theorem.

6 Decomposition Theorems

The following conclusion from [29] is recalled in this section, and other decomposition theorem is
discussed utilizing earlier proof. Let’s say that on the manifold M = B x B,, g is a Riemannian

metric. Then

(i) M = By x, By is a locally product if and only if By and B, are totally geodesic foliations,

(ii) a warped product By x ; B; if and only if B is a totally geodesic foliation and Bj is a spherics

foliation, i.e., it is umbilic and its mean curvature vector field is parallel,

(ii) M = B| x B, is a twisted product if and only if By is a totally geodesic foliation and B; is a
totally umbilic foliation.

The fact that J : (B1,¢,£,1,81) — (B2,g2) is 2B.7¢ . ensures the existence of three or-

thogonal complementary distributions D, D¢, , and Dy, , all of which meet the previously stated
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characteristics of being integrable and totally geodesic. The logical next step is to search for the
circumstances in which the total space B; transforms into locally twisted product manifolds. We

now present the following outcome.

Theorem 6.1 Let J be a 2%8. €. from Kenmotsu manifold (M, 9,E,1,g1) onto a RM (M>, g>).
Then By is locally twisted product of the form B (xer;,) % Bi (kers.) - if and only if

1 ~ o~ ~ ~ o~ ~ ~ ~ o~
282((VL)U.xV), finX) = g1 (T oV ,nX) + 81 (V' VoV + TV ,1X)
| (6.44)
+ ﬁgz(V{,xv,J*nX)
and
g(X,Y)H = —t/gtY — oVgtY — 0cgnY — §J.(ViJn¥) + X (InA)in¥ 645
+n¥(InA)tX —+(GInA)g(X,n¥) —n(0)g1(X,Y), '
where H is a mean curvature vector and for any U,V € T(kerJ,) and X,Y € T'(kerJ,)*.
Proof. For any X e [(kerJ,)* and Uve I'(kerJ,) and using equations (2.3), (2.6), (2.4),

(2.12) and (2.13), we have

From using formula (2.7), (2.16) and with conformality of RS J, the above equation finally takes

the form
21(VgV.X) = g1(Tp0V.nX) +81(VV 0V + T5 1V, iX)

1 ~ s s 1 ~ =
= 728((VL)U. V), fonX) + 582V aV, JunX)

It follows that the equation (6.44) satisfies if and only if B (kers,) 18 totally geodesic. On the other
hand, for U € ['(kerJ,) and X,Y e ['(kerJ,)* with using equations (2.3), (2.4), (2.6) and (3.21),

we get
By using the equation (2.16) with definition of conformality of J, we deduce that

~ o~ 1 ~ o~ ~ ~ ~

1
ﬁgz
+81(V§P?7¢ﬁ) +g1<dyn?,wl7) ~n0)a1(X,Y).
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Considering the (i) part of Lemma 2.1, above equation turns in to

~ ~ 1 ~ ~ ~ o~ ~ o~
g1(VgY,U) = ﬁgz(vf?f*nY,J*%U) +81(VgtY, U) + g1 (gnY , 0U)
— 81 (Glnﬂ'a)?)gl (l’l?,%l/f\) _gl(GlnAWni;)gl()?vxﬁ)

+81(GInA, xU)g1(X,nY) —n(U)g1(X,Y).

By direct calculation, finally we get

g1(X,Y)H = —1/etY — 0VtY — 0lgnY — J.(V5J.nY ) + X (InA )y
+nY (InA)1X —t(GInA)g (X, nY) +n(U)g1(0X,Y).

From the above equation we conclude that B (kerd,) - is totally umbilical if and only if equation
(6.45) satisfied.
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