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 هندسة الغمرات شبه المائلة شبه المتماثلة

 

في هذا البحث، قمنا بدراسة الغمر المطابق شبه ثنائي المائل من المشعبات الريمانية  الملخص:

المنتجة تقريبا إلى المشعبات الريمانية كتعميم للغمرات ثنائية المائلة والغمرات نصف المائلة. نناقش 

ي الغمرات فشروط التكامل للتوزيعات مع دراسة هندسة أوراق التوزيعات. نناقش أيضًا تعدد التناغم 

 شبه الثنائية المتطابقة.

  



The Islamic University Journal of Applied Sciences (JESC) Issue II, Volume V, December 2023 

122 
 

 

 

  



The Islamic University Journal of Applied Sciences (JESC) Issue II, Volume V, December 2023 

123 
 

1 Introduction 

 

Both mathematics and physics employ immersions and submersions extensively. 

Yang-Mills theory ([6], [29]), Kaluza-Klein theory ([12], [15]) are the significant 

application of submersion. The characteristics of slant submersions have become 

a fascinating topic in differential geometry, as well as in complex and contact 

geometry. The concept of Riemannian submersion between Riemannian 

manifolds has been extensively studied by prominent mathematicians such as B. 

O'Neill [17] and A. Gray [8], who independently made significant contributions to 

this field. In 1976, B. Watson [28], introduced the notion of almost Hermitian 

submersions, which focuses on the submersion between almost Hermitian 

manifolds. Since then, they have been widely used in differential geometry to study 

Riemannian manifolds having differentiable structures [26]. 

D. Chinea [7] introduced the concept of almost contact Riemannian submersions 

between almost contact metric manifolds. In his work, Chinea extensively 

examined the differential geometric aspects of the fiber space, base space, and total 

space involved in these submersions. A step forward, R Prasad et. al. studied quasi 

bi-slant submersions from almost contact metric manifolds onto Riemannian 

manifolds [21], [19], [14]. As a generalization of Riemannian submersions, Fuglede 

[9] and Ishihara [13], separately studied horizontally conformal submersions. 

Later on, many authors investigated different kinds of conformal Riemannian 

submersions like conformal anti-invariant submersions ([4], conformal slant 

submersions [3], conformal semi-slant submersions ([2], [11], [18]) and conformal 

hemi-slant submersions ([27], [1]) etc. from almost Hermitian manifolds onto a 

Riemannian manifold. Most of these Riemannian submersions and conformal 

submersions are also studied from almost contact metric manifolds onto a 

Riemannian manifold. 

In this paper, we study conformal quasi bi-slant submersions from locally product 

Riemannian manifold onto a Riemannian manifold. This paper is divided into six 

sections. Section 2 contains brief history of Riemannian and conformal 
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submersions. Also, we recall almost product Riemannian manifolds and, in 

particular, locally product Riemannian manifolds. In section 3, we investigate 

some fundamental results for conformal quasi bi-slant submersions from locally 

product Riemannian manifolds onto a Riemannian manifold those are required for 

our main sections. The results of integrability and totally geodesicness of 

distributions are presented in Section 4. In section 5, we discuss some 

decomposition theorems and also conditions under which locally product 

Riemannian manifold turns into locally twisted product manifold. While last 

section is devoted to the study of pluriharmonicity of conformal quasi bi-slant 

submersion. 

Note: We will use some abbreviations throughout the paper as follows: locally 

product Riemannian manifold- 𝐿𝑃𝑅 manifold, Conformal quasi bi-slant 

submersion- CQBS submersion, 

 

2 Preliminaries 

 

In this section, we will discuss the concept of almost product Riemannian 

manifold and also, Riemannian submersions and conformal submersions 

between two Riemannian manifolds with some basic facts and results. These 

concepts have been previously introduced in the earlier work in this field, so we 

mentioned them in quotation and proper references have been provided to 

acknowledge their contributions. Furthermore, the definitions have been restated 

here to ensure clarity and facilitate a comprehensive understanding of the 

concepts presented in this study. 

"An 𝑛-dimensional manifold 𝑄‾  with (1,1) type tensor field 𝐹 such that 

   𝐹2 = 𝐼, (𝐹 ≠ 𝐼),    (2.1) 

is called an almost product manifold with almost structure 𝐹. There exists a 

Riemannian metric 𝑔 on an almost product manifold which is compatible with 

the structure F in the sense that 
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                                                                     𝑔(𝐹𝑈, 𝐹𝑉) = 𝑔(𝑈, 𝑉),            

(2.2) 

for any 𝑈, 𝑉 ∈ Γ(𝑇𝑀), then (𝑄‾ , 𝑔, 𝐹) is called an almost product Riemannian 

manifold. The covariant derivative of F defined by 

                                                     (∇𝑈𝐹𝑉) = ∇𝑈𝐹𝑉 − 𝐹∇𝑈𝑉                  

 (2.3) 

for any vector fields 𝑈, 𝑉 ∈ Γ(𝑇‾𝑄). The manifold is called locally product 

Riemannian ( 𝐿𝑃𝑅) manifold if 𝐹 is parallel with respect to connection ∇.e., 

                                                   (∇_𝑈 𝐹)𝑉 = 0                                     (2.4) 

for any vector fields 𝑈, 𝑉 ∈ Γ(𝑇‾𝑄). 

 

Let Ψ: (𝑄‾1, 𝑔1, 𝐹) → (𝑄‾2, 𝑔2) be a Riemannian submersion. A vector field 𝑋‾  on 𝑄‾1 is 

called a basic vector field if 𝑋‾ ∈ Γ(ker Ψ∗)⊥ and Ψ-related with a vector field 𝑋‾  on 

𝑄‾2 i.e., Ψ∗(𝑋‾(𝑞)) = 𝑋‾Ψ(𝑞) for 𝑞 ∈ 𝑄‾1." 

The formulae given by O'Neill [17] of two (1,2) tensor fields 𝒯 and 𝒜, plays a 

crucial role in the theory of submersions 

𝒜𝐸1
𝐹1 = ℋ∇ℋ𝐸1

𝒱𝐹1 + 𝒱∇ℋ𝐸1
ℋ𝐹1,

𝒯𝐸1
𝐹1 = ℋ∇𝒱𝐸1

𝒱𝐹1 + 𝒱∇𝒱𝐸1
ℋ𝐹1,

 

for any 𝐸1, 𝐹1 ∈ Γ(𝑇𝑄‾1) and ∇ is Levi-Civita connection of 𝑔1. Note that a 

Riemannian submersion Ψ: (𝑄‾1, 𝑔1, 𝐹) → (𝑄‾2, 𝑔2) has totally geodesic fibers if and 

only if 𝒯 vanishes identically. From (2.5) and (2.6), we can deduce 

∇�̃�1
�̃�1 = 𝒯�̃�1

�̃�1 + 𝒱∇�̃�1
�̃�1

∇�̃�1
�̃�1 = 𝒯�̃�1

�̃�1 + ℋ∇�̃�1
�̃�1

∇�̃�1
�̃�1 = 𝒜�̃�1

�̃�1 + 𝒱1∇�̃�1
�̃�1

∇�̃�1
�̃�1 = ℋ∇�̃�1

�̃�1 + 𝒜�̃�1
�̃�1

 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10

) 
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for any vector fields �̃�1, �̃�1 ∈ Γ(ker Ψ∗) and �̃�1, �̃�1 ∈ Γ(ker Ψ∗)⊥. 

It is observe that 𝒯 and 𝒜 are skew-symmetric, that is, 

                    𝑔(𝒜�̃�𝐸1, 𝐹1) = −𝑔(𝐸1, 𝒜�̃�𝐹1), 𝑔(𝒯�̃�𝐸1, 𝐹1) = −𝑔(𝐸1, 𝒯�̃�𝐹1),          (2.11) 

for any vector fields 𝐸1, 𝐹1 ∈ Γ(𝑇𝑝𝑄‾1). It is also observed that the restriction of 𝒯 

to the vertical distribution 𝒯|𝑉×𝑉 is exactly the second fundamental form of the 

fibres of Ψ. Since 𝒯𝑉 is skew-symmetric we say Ψ has totally geodesic fibres if and 

only if 𝒯 = 0. For the special case when Ψ is horizontally conformal submersion 

we have " 

Proposition 2.1. [10] Let Ψ: (𝑄‾1, 𝑔1) → (𝑄‾2, 𝑔2) be a horizontally conformal 

submersion with dilation 𝜆 and 𝑋, 𝑌 be the horizontal vectors, then 

                               𝒜𝑋𝑌 =
1

2
[𝒱[𝑋, 𝑌] − 𝜆2𝑔1(𝑋, 𝑌)grad (

1

𝜆2)]                 

 (2.12) 

We see that the skew-symmetric part of measures the obstruction integrability of 

the horizontal distribution (ker Ψ∗)⊥. 

Definition 2.1. A horizontally conformally submersion Ψ: 𝑄‾1 → 𝑄‾2 is called 

horizontally homothetic if the gradient of its dilation 𝜆 is vertical, i.e., 

ℋ(grad 𝜆) = 0, 

where ℋ is the orthogonal complementary distribution to 𝜈 = ker Ψ∗ in Γ(𝑇𝑝𝑄‾1). 

The second fundamental form of smooth map Ψ is given by 

(∇Ψ∗)(�̃�1, �̃�1) = ∇�̃�1

Ψ Ψ∗�̃�1 − Ψ∗∇�̃�1
�̃�1, 

and the map be totally geodesic if (∇Ψ∗)(�̃�1, �̃�1) = 0 for all �̃�1, �̃�1 ∈ Γ(𝑇𝑝𝑄‾1), where 

∇ and ∇Ψ∗ are Levi-Civita and pullback connections.” 

(2.13) 

(2.14) 
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Now, we recall the following lemma for our main section. 

 

Lemma 2.1. Let Ψ: 𝑄‾1 → 𝑄‾2 be a horizontal conformal submersion. Then, we 

have 

(i) (∇Ψ∗)(�̃�1, �̃�1) = �̃�1(ln 𝜆)Ψ∗(�̃�1) + �̃�1(ln 𝜆)Ψ∗(�̃�1) − 𝑔1(�̃�1, �̃�1)Ψ∗(grad ln 𝜆), 

(ii) (∇Ψ∗)(�̃�1, �̃�1) = −Ψ∗(𝒯�̃�1
�̃�1), 

(iii) (∇Ψ∗)(�̃�1, �̃�1) = −Ψ∗(∇�̃�1
�̃�1) = −Ψ∗(𝒜�̃�1

�̃�1), 

for any horizontal vector fields �̃�1, �̃�1 and vertical vector fields �̃�1, �̃�1[5]. 

 

3 Conformal quasi bi-slant submersions 

 

First of all we are giving in this sections some definitions that will useful 

througout the text. 

Definition 3.1. [28] Let Ψ: (𝑄‾1, 𝑔𝑄1
) → (𝑄‾2, 𝑔𝑄2

) be a smooth map between two 

Riemannian manifolds having dimensions 𝑚1 and 𝑚2, respectively. Then Ψ is 

called horizontally weakly conformal or semi conformal at 𝑥 ∈ 𝑄‾1 if either 

(i) Ψ∗𝑥 = 0, or 

(ii) Ψ∗𝑥 maps horizontal space ℋ𝑥 = (ker (Ψ∗𝑥))
⊥

 conformally onto 𝑇Ψ∗(𝑁) i.e., Ψ∗𝑥 

is surjective and there exits a number Λ(𝑥) ≠ 0 such that 

𝑔𝑁(Ψ∗𝑥𝑋, Ψ∗𝑥𝑌) = Λ(𝑥)𝑔(𝑋, 𝑌), 

for any 𝑋, 𝑌 ∈ ℋ𝑥. 

Equation (3.1) can be re-written as 

(Ψ∗𝑔𝑁)𝑥 |ℋ𝑥×ℋ𝑥
= Λ(𝑥)𝑔(𝑥) |ℋ𝑥×ℋ𝑥

. 

(3.1) 
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A point 𝑥 satisfies (𝑖) in above definition if and only if it is a critical point of Ψ. A 

point, satisfying (ii) is called a regular point. At a critical point, Ψ∗𝑥 has rank 0 ; at 

a regular point, Ψ∗𝑥 has rank 𝑛 and Ψ defines a submersion. The number 𝜆(𝑥) is 

called the square dilation (of Ψ at 𝑥 ); it is necessarily nonnegative. Its square 

root 𝜆(𝑥) = √Λ(𝑥) is called the dilation of Ψ at 𝑥. The map Ψ is called horizontally 

weakly conformal or semi conformal on 𝑄‾1 if it is horizontally weakly conformal 

at every point of 𝑀. It is clear that if Ψ has no critical points, then we call it a 

(horizontally) conformal submersion. 

. Let us suppose that (𝑄‾1, 𝑔1, 𝐹) be an almost product manifold 

and (𝑄‾2, 𝑔2) be a Riemannian manifold. A Riemannian 

submersion Ψ from 𝑄‾1 onto 𝑄‾2 is called a conformal quasi bi-slant (𝐶𝑄𝐵𝑆) 

submersion if there exists three mutually orthogonal distributions 𝔇𝔗, 𝔇𝜃1 and 

𝔇𝜃2  such that 

(i) ker Ψ∗ = 𝔇𝔗 ⊕ 𝔇𝜃1 ⊕ 𝔇𝜃2, 

(ii) 𝔇𝔗 is invariant. i.e., 𝐹𝔇𝔗 = 𝔇𝔗, 

(iii) 𝐹𝔇𝜃1 ⊥ 𝔇𝜃2 and 𝐹𝔇𝜃2 ⊥ 𝔇𝜃1, 

(iv) for any non-zero vector field �̃�1 ∈ (𝔇𝜃1)
𝑝

, 𝑝 ∈ 𝑄‾1 the angle 𝜃1 between (𝔇𝜃1)
𝑝

 

and 𝐹�̃�1 is constant and independent of the choice of the point 𝑝 and �̃�1 ∈ (𝔇𝜃1)
𝑝

, 

(v) for any non-zero vector field �̃�1 ∈ (𝔇𝜃2)
𝑞

, 𝑞 ∈ 𝑄‾1 the angle 𝜃2 between (𝔇𝜃2)
𝑞
 

and 𝐹�̃�1 is constant and independent of the choice of the point 𝑞 and �̃�1 ∈ (𝔇𝜃2)
𝑞
. 

If we denote the dimensions of 𝔇𝔗, 𝔇𝜃1 and 𝔇𝜃2  by 𝑚1, 𝑚2 and 𝑚3 respectively, 

then we have the following observations: 

(i) If 𝑚1 ≠ 0, 𝑚2 = 0 and 𝑚3 = 0, then Ψ is an invariant submersion. 

(ii) If 𝑚1 ≠ 0, 𝑚2 ≠ 0,0 < 𝜃1 <
𝜋

2
 and 𝑚3 = 0, then Ψ is a proper semi-slant 

submersion. 

(iii) If 𝑚1 = 0, 𝑚2 = 0 and 𝑚3 ≠ 0,0 < 𝜃2 <
𝜋

2
, then Ψ is a slant submersion with 

slant angle 𝜃2. 

Definition 3.2 
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(iv) If 𝑚1 = 0, 𝑚2 ≠ 0,0 < 𝜃1 <
𝜋

2
 and 𝑚3 ≠ 0, 𝜃2 =

𝜋

2
, then Ψ proper hemi-slant 

submersion. 

(v) If 𝑚1 = 0, 𝑚2 ≠ 0,0 < 𝜃1 <
𝜋

2
 and 𝑚3 ≠ 0,0 < 𝜃2 <

𝜋

2
, then Ψ is proper bi-slant 

submersion with slant angles 𝜃1 and 𝜃2. 

(vi) If 𝑚1 ≠ 0, 𝑚2 ≠ 0,0 < 𝜃1 <
𝜋

2
 and 𝑚3 ≠ 0,0 < 𝜃2 <

𝜋

2
, then Ψ is proper quasi 

bi-slant submersion with slant angles 𝜃1 and 𝜃2. 

Hence, it is clear that CQBS submersions are generalized version of conformal 

quasi hemi-slant submersions. 

Let Ψ be a CQBS submersion from an almost product Riemannian manifold 

(𝑄‾1, 𝑔1, 𝐹) onto a Riemannian manifold (𝑄‾2, 𝑔2). Then, for any 𝑈 ∈ (ker Ψ∗), we 

have 

�̃� = 𝔄�̃� + 𝔅�̃� + ℭ�̃�, 

where 𝔄, 𝔅 and ℭ are the projections morphism onto 𝔇𝔗, 𝔇𝜃1, and 𝔇𝜃2, 

respectively. Now, for any �̃� ∈ (ker Ψ∗), we have 

𝐹�̃� = 𝜉�̃� + 𝜂�̃� 

where 𝜉�̃� ∈ Γ(ker Ψ∗) and 𝜂�̃� ∈ Γ(ker Ψ∗)⊥. From equations (3.2) and (3.3), we 

have 

𝐹�̃�  = 𝐹(𝔄�̃�) + 𝐹(𝔅�̃�) + 𝐹(ℭ�̃�)

 = 𝜉(𝔄�̃�) + 𝜂(𝔄�̃�) + 𝜉(𝔅�̃�) + 𝜂(𝔅�̃�) + 𝜉(ℭ�̃�) + 𝜂(ℭ�̃�).
 

Since 𝐹𝔇𝔗 = 𝔇𝔗 and 𝜂(𝔄�̃�) = 0, we have 

𝐹�̃� = 𝜉(𝔄�̃�) + 𝜉(𝔅�̃�) + 𝜂(𝔅�̃�) + 𝜉(ℭ�̃�) + 𝜂(ℭ�̃�). 

Hence, we have the decomposition as 

𝐹(ker Ψ∗) = 𝜉𝔇𝔗 ⊕ 𝜉𝔇𝜃1 ⊕ 𝜉𝔇𝜃2 ⊕ 𝜂𝔇𝜃1 ⊕ 𝜂𝔇𝜃2 . 

(3.2) 

(3.3) 
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From equations (3.4), we get 

                                          (ker Ψ∗)⊥ = 𝜂𝔇𝜃1 ⊕ 𝜂𝔇𝜃2 ⊕ 𝜇,           

(3.5) 

where 𝜇 is the orthogonal complement to 𝜂𝔇𝜃1 ⊕ 𝜂𝔇𝜃2  in (ker Ψ∗)⊥ and 𝜇 is 

invariant with respect to 𝐹. Now, for any �̃� ∈ Γ(ker Ψ∗)⊥, we have 

                                                               𝐹�̃� = 𝑃�̃� +

𝐿�̃�                                                                          (3.6) 

where 𝑃�̃� ∈ Γ(ker Ψ∗) and 𝐿�̃� ∈ Γ(𝜇). 

 

Lemma 3.1. Let (𝑄‾1, 𝑔1, 𝐹) be an almost product Riemannian manifold and 

(𝑄‾2, 𝑔2) be a Riemannian manifold. If Ψ: 𝑄‾1 → 𝑄‾2 is a CQBS submersion, then we 

have 

�̃� = 𝜉2�̃� + 𝑃𝜉�̃�, 𝜂𝜉�̃� + 𝐿𝜂�̃� = 0,

�̃� = 𝜂𝑃�̃� + 𝐿2�̃�, 𝜉𝑃�̃� + 𝑃𝐿�̃� = 0,
 

for �̃� ∈ Γ(ker Ψ∗) and �̃� ∈ Γ(ker Ψ∗)⊥. 

Proof. By using equations (2.1), (3.3) and (3.6), we get the desired results. 

Since Ψ: 𝑄‾1 → 𝑄‾2 is a CQBS submersion, Here we give some useful results that 

will be used throughout the paper. 

Lemma 3.2. [19] Let Ψ be a CQBS submersion from an almost product 

Riemannian manifold (𝑄‾1, 𝑔1, 𝐹) onto a Riemannian manifold (𝑄‾2, 𝑔2), then we 

have 

(i) 𝜉2�̃� = cos2 𝜃1�̃�, 

(ii) 𝑔1(𝜉�̃�, 𝜉�̃�) = cos2 𝜃1𝑔1(�̃�, �̃�), 

(iii) 𝑔(𝜂�̃�, 𝜂�̃�) = sin2 𝜃1𝑔1(�̃�, �̃�), 

for any vector fields �̃�, �̃� ∈ Γ(𝔇𝜃1). 

(3.4) 



The Islamic University Journal of Applied Sciences (JESC) Issue II, Volume V, December 2023 

131 
 

 

Lemma 3.3. [19] Let Ψ be a CQBS submersion from an almost product 

Riemannian manifold (𝑄‾1, 𝑔1, 𝐹) onto a Riemannian manifold (𝑄‾2, 𝑔2), then we 

have 

(i) 𝜉2�̃� = cos2 𝜃2�̃�, 

(ii) 𝑔1(𝜉�̃�, 𝜉�̃�) = cos2 𝜃2𝑔1(�̃�, �̃�), 

(iii) 𝑔1(𝜂�̃�, 𝜂�̃�) = sin2 𝜃2𝑔1(�̃�, �̃�), 

for any vector fields �̃�, �̃� ∈ Γ(𝔇𝜃2). 

The proof of above Lemmas is similar to the proof of the Theorem 3.5 of [19]. 

Thus, we omit the proofs. 

Let (𝑄‾2, 𝑔2) be a Riemannian manifold and that (𝑄‾1, 𝑔1, 𝐹) is a 𝐿𝑃𝑅 manifold. We 

now observe how the tensor fields 𝒯 and 𝒜 of a CQBS submersion Ψ: (𝑄‾1, 𝑔1, 𝐹) →

(𝑄‾2, 𝑔2) are affected by the 𝐿𝑃𝑅 structure on 𝑄‾1. 

Lemma 3.4. Let Ψ be a CQBS submersion from an almost product Riemannian 

manifold (𝑄‾1, 𝑔1, 𝐹) onto a Riemannian manifold (𝑄‾2, 𝑔2), then we have 

𝒜�̃�𝑃�̃� + ℋ∇�̃�𝐿�̃� = 𝜉ℋ∇�̃��̃� + 𝑃𝒜�̃��̃�

𝒱∇�̃�𝑃�̃� + 𝒜�̃�𝐿�̃� = 𝜂ℋ∇�̃��̃� + 𝐿𝒜�̃��̃�.

𝒱∇�̃�𝜉�̃� + 𝒜�̃�𝜂�̃� = 𝑃𝒜�̃��̃� + 𝜉𝒱∇�̃��̃�

𝒜�̃�𝜉�̃� + ℋ∇�̃�𝜂�̃� = 𝒞𝒜�̃��̃� + 𝜂𝒱∇�̃��̃�.

𝒱∇�̃�𝑃�̃� + 𝒯�̃�𝐿�̃� = 𝜉𝒯�̃�𝐿�̃� + 𝑃ℋ∇�̃��̃�

𝒯�̃�𝑃�̃� + ℋ∇�̃�𝐿�̃� = 𝜂𝒯�̃��̃� + 𝐿ℋ∇�̃��̃�.

𝒱∇�̃�𝜉�̃� + 𝒯�̃�𝜂�̃� = 𝔅𝒯�̃��̃� + 𝜉𝒱∇�̃��̃�

𝒯�̃�𝜉�̃� + ℋ∇�̃�𝜂�̃� = 𝐿𝒯�̃��̃� + 𝜂𝒱∇�̃��̃�,

 

for any vector fields �̃�, �̃� ∈ Γ(ker Ψ∗) and �̃�, �̃� ∈ Γ(ker Ψ∗)⊥. 

Proof. By the direct calculation, using (3.6), (2.10) and (2.3), we can easily obtain 

relations given by (3.7) and (3.8). Remaining relations can be obtained similarly 

by using (3.3), (3.6), (2.7)-(2.10) and (2.3). 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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Now, we discuss some basic results which are useful to explore the geometry of 

CQBS submersion Ψ: 𝑄‾1 → 𝑄‾2. For this, define the following : 

(∇�̃�𝜉)�̃�  = 𝒱∇�̃�𝜉�̃� − 𝜉𝒱∇�̃��̃�

(∇�̃�𝜂)�̃�  = ℋ∇�̃�𝜂�̃� − 𝜂𝒱∇�̃��̃�

(∇�̃�𝑃)�̃�  = 𝒱∇�̃�𝑃�̃� − 𝑃ℋ∇�̃��̃�

(∇�̃�𝐿)�̃�  = ℋ∇�̃�𝐿�̃� − 𝐿ℋ∇�̃��̃�

 

for any vector fields �̃�, �̃� ∈ Γ(ker Ψ∗) and �̃�, �̃� ∈ Γ(ker Ψ∗)⊥. 

 

Lemma 3.5. Let (𝑄‾1, 𝑔1, 𝐹) be LPR manifold and (𝑄‾2, 𝑔2) be a Riemannian 

manifold. If Ψ: 𝑄‾1 → 𝑄‾2 is a CQBS submersion, then we have 

(∇�̃�𝜉)�̃� = 𝑃𝒯�̃��̃� − 𝒯�̃�𝜂�̃�

(∇�̃�𝜂)�̃� = 𝐿𝒯�̃��̃� − 𝒯�̃�𝜉�̃�

(∇�̃�𝑃)�̃� = 𝜉𝒜�̃��̃� − 𝒜�̃�𝐿�̃�

(∇�̃�𝐿)�̃� = 𝜂𝒜�̃��̃� − 𝒜�̃�𝑃�̃�,

 

for all vector fields �̃�, �̃� ∈ Γ(ker Ψ∗) and �̃�, �̃� ∈ Γ(ker Ψ∗ ⊥). 

 

Proof. By using equations (2.3), (2.7)- (2.10) and equations (3.15)-(3.18), we get 

the proof of the lemma. 

If the tenors 𝜉 and 𝜂 are parallel with respect to the connection ∇ of 𝑄‾1 then, we 

have 

𝑃𝒯�̃��̃� = 𝒯�̃�𝜂�̃�, 𝐿𝒯�̃��̃� = 𝒯�̃�𝜉�̃� 

for any vector fields �̃�, �̃� ∈ Γ(𝑇𝑄‾1). 

 

4 Integrability and totally geodesicness of 

distributions 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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Firslty, we are giving definition of Riemannian manifold. 

 

A Riemannian metric on a smooth manifold 𝑀 is a symmetric positive definite 

smooth 2-covariant tensor field 𝑔. A smooth manifold 𝑀 equipped with a 

Riemannian metric 𝑔 is called a Riemannian manifold and denoted by (𝑀, 𝑔). 

 

Since, Ψ: 𝑄‾1 → 𝑄‾2 is a CQBS submersion, where (𝑄‾1, 𝑔1, 𝐹) representing a 𝐿𝑃𝑅 

manifold and (𝑄‾2, 𝑔2) denoting a Riemannian manifold. The existence of three 

mutually orthogonal distributions, including an invariant distribution 𝔇, a pair of 

slant distributions 𝔇𝜃1  and 𝔇𝜃2, is guaranteed by the definition of CQBS-

submersion. We begin the subject of distributions integrability by determining 

the integrability of the slant distributions as follows: 

Theorem 4.1. Let Ψ be a CQBS submersion from LPR manifold (𝑄‾1, 𝑔1, 𝐹) onto 

a Riemannian manifold (𝑄‾2, 𝑔2). Then slant distribution 𝔇𝜃1  is integrable if and 

only if 

1

𝜆2
{𝑔2(∇�̃�1

Ψ Ψ∗𝜂�̃�1 + ∇�̃�1

Ψ Ψ∗𝜂�̃�1, Ψ∗𝜂ℭ�̃�)}

 =
1

𝜆2
{𝑔2 ((∇Ψ∗)(�̃�1, 𝜂�̃�1) + (∇Ψ∗)(�̃�1, 𝜂�̃�1), Ψ∗𝜂ℭ�̃�)}

 − 𝑔1(∇�̃�1
𝜂𝜉�̃�1 − ∇�̃�1

𝜂𝜉�̃�1, �̃�) − 𝑔1(𝒯�̃�1
𝜂�̃�1 − 𝒯�̃�1

𝜂�̃�1, 𝐹𝔄�̃� + 𝜉ℭ�̃�),

 

for any �̃�1, �̃�1 ∈ Γ(𝔇𝜃1) and �̃� ∈ Γ(𝔇𝔗 ⊕ 𝔇𝜃2). 

Proof. For �̃�1, �̃�1 ∈ Γ(𝔇𝜃1) and �̃� ∈ Γ(𝔇𝔗 ⊕ 𝔇𝜃2) with using equations (2.2), (2.3), 

(2.13) and (3.3), we get 

𝑔1([�̃�1, �̃�1], �̃�) = 𝑔1(∇�̃�1
𝜉�̃�1, 𝐹�̃�) + 𝑔1(∇�̃�1

𝜂�̃�1, 𝐹�̃�)

 −𝑔1(∇�̃�1
𝜉�̃�1, 𝐹�̃�) − 𝑔1(∇�̃�1

𝜂�̃�1, 𝐹�̃�).
 

By using equations (2.3), (2.13) and (3.3), we have 

(4.1) 
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𝑔1([�̃�1, �̃�1], �̃�) = 𝑔1(∇�̃�1
𝜉2�̃�1, �̃�) + 𝑔1(∇�̃�1

𝜂𝜉�̃�1, �̃�) − 𝑔1(∇�̃�1
𝜉2�̃�1, �̃�)

 −𝑔1(∇�̃�1
𝜂𝜉�̃�1, �̃�) + 𝑔1(∇�̃�1

𝜂�̃�1, 𝐹𝔄�̃� + 𝜉ℭ�̃� + 𝜂ℭ�̃�)

 −𝑔1(∇�̃�1
𝜂�̃�1, 𝐹𝔄�̃� + 𝜉ℭ�̃� + 𝜂ℭ�̃�).

 

Taking account the fact of Lemma 3.2 with using equation (2.8), we get 

𝑔1([�̃�1, �̃�1], 𝑍) = cos2 𝜃1𝑔1([�̃�1, �̃�1], �̃�) + 𝑔1(∇�̃�1
𝜂𝜉�̃�1 − ∇�̃�1

𝜂𝜉�̃�1, �̃�)

 +𝑔1(𝒯�̃�1
𝜂�̃�1 − 𝒯�̃�1

𝜂�̃�1, 𝐹𝔄�̃� + 𝜉ℭ�̃�)

 +𝑔1(ℋ∇�̃�1
𝜂�̃�1 − ℋ∇�̃�1

𝜂�̃�1, 𝜂ℭ�̃�).

 

By using formula (2.14) with Lemma 2.1, we finally get 

sin2 𝜃1𝑔1([�̃�1, �̃�1], �̃�)

 =
1

𝜆2
{𝑔2(∇�̃�1

Ψ Ψ∗𝜂�̃�1 − ∇�̃�1

Ψ Ψ∗𝜂�̃�1, Ψ∗𝜂ℭ�̃�)}

 +
1

𝜆2
{𝑔2 ((∇Ψ∗)(�̃�1, 𝜂�̃�1), Ψ∗𝜂ℭ�̃�) + 𝑔2 ((∇Ψ∗)(�̃�1, 𝜂�̃�1), Ψ∗𝜂ℭ�̃�)}

 + 𝑔1(𝒯�̃�1
𝜂�̃�1 − 𝒯�̃�1

𝜂�̃�1, 𝐹𝔄�̃� + 𝜉ℭ�̃�) + 𝑔1(∇�̃�1
𝜂𝜉�̃�1 − ∇�̃�1

𝜂𝜉�̃�1, �̃�).

 

In a similar way, we can examine the condition of integrability for slant 

distribution as follows: 

Theorem 4.2. Let Ψ: (𝑄‾1, 𝑔1, 𝐹) → (𝑄‾2, 𝑔2) be a CQBS submersion, where 

(𝑄‾1, 𝑔1, 𝐹) a LPR manifold and (𝑄‾2, 𝑔2) a Riemannian manifold. Then slant 

distribution 𝔇𝜃2  is integrable if and only if 

−
1

𝜆2
{𝑔2 ((∇Ψ∗)(�̃�2, 𝜂�̃�2) − (∇Ψ∗)(�̃�2, 𝜂�̃�2), Ψ∗𝜂𝔅�̃�)}

= 𝑔1(𝒯�̃�2
𝜂𝜉�̃�2 − 𝒯�̃�2

𝜂𝜉�̃�2, �̃�) + 𝑔1(𝒯�̃�2
𝜂�̃�2 − 𝒯�̃�2

𝜂�̃�2, 𝐹𝔄�̃� + 𝜉𝔅�̃�)

 +
1

𝜆2
{𝑔2(∇�̃�2

Ψ Ψ∗𝜂�̃�2 − ∇�̃�2

Ψ Ψ∗𝜂�̃�2, Ψ∗𝜂𝔅�̃�)}.

 

for any �̃�2, �̃�2 ∈ Γ(𝔇𝜃2) and �̃� ∈ Γ(𝔇𝔗 ⊕ 𝔇𝜃⊥). 

Proof. By using equations (2.2), (2.3), (2.13) and (3.3), we have 

𝑔1([�̃�2, �̃�2], �̃�) =  −𝑔1(∇�̃�2
𝜉2�̃�2, �̃�) − 𝑔1(∇�̃�2

𝜂𝜉�̃�2, �̃�) + 𝑔1(∇�̃�2
𝜉2�̃�2, �̃�)

 +𝑔1(∇�̃�2
𝜂𝜉�̃�2, �̃�) + 𝑔1(∇�̃�2

𝜂�̃�2 − ∇�̃�2
𝜂�̃�2, 𝐹�̃�),
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for any �̃�2, �̃�2 ∈ Γ(𝔇𝜃2) and �̃� ∈ Γ(𝔇𝔗 ⊕ 𝔇𝜃1). From equations (2.8) and Lemma 

3.3 , we get 

sin2 𝜃2𝑔1([�̃�2, �̃�2], �̃�) = 𝑔1(𝒯�̃�2
𝜂�̃�2 − 𝒯�̃�2

𝜂�̃�2, 𝐹𝔄�̃� + 𝜉𝔅�̃�)

 +𝑔1(ℋ∇�̃�2
𝜂�̃�2 − ℋ∇�̃�2

𝜂�̃�2, 𝜂𝔅�̃�)

 +𝑔1(𝒯�̃�2
𝜂𝜉�̃�2 − 𝒯�̃�2

𝜂𝜉�̃�2, �̃�).

 

Since Ψ is CQBS submersion, using conformality condition with equation (2.14), 

we finally get 

sin2 𝜃2𝑔1([�̃�2, �̃�2], �̃�) =
1

𝜆2
{𝑔2 ((∇Ψ∗)(�̃�2, 𝜂�̃�2) − (∇Ψ∗)(�̃�2, 𝜂�̃�2), Ψ∗𝜂𝔅�̃�)}

 +
1

𝜆2
{𝑔2(∇�̃�2

Ψ Ψ∗𝜂�̃�2 − ∇�̃�2

Ψ Ψ∗𝜂�̃�2, Ψ∗𝜂𝔅�̃�)}

 +𝑔1(𝒯�̃�2
𝜂�̃�2 − 𝒯�̃�2

𝜂�̃�2, 𝐹𝔄�̃� + 𝜉𝔅�̃�)

 +𝑔1(𝒯�̃�2
𝜂𝜉�̃�2 − 𝒯�̃�2

𝜂𝜉�̃�2, �̃�)

 

This completes the proof of the theorem. 

 

Since, the invariant distribution is mutually orthogonal to the slant distributions 

in accordance with the concept of CQBS-submersion, this led us to investigate the 

necessary and sufficient condition for the invariant distribution to be integrable. 

Theorem 4.3. Let Ψ: (𝑄‾1, 𝑔1, 𝐹) → (𝑄‾2, 𝑔2) be a CQBS submersion, where 

(𝑄‾1, 𝑔1, 𝐹) a LPR manifold and (𝑄‾2, 𝑔2) a Riemannian manifold. Then the 

invariant distribution 𝔇𝔗 is integrable if and only if 

𝑔1(𝒯�̃�𝜉𝔄�̃� − 𝒯�̃�𝜉𝔄�̃�, 𝜂𝔅�̃� + 𝜂ℭ�̃�)

 −𝑔1(𝒱∇�̃�𝜉𝔄�̃� − 𝒱∇�̃�𝜉𝔄�̃�, 𝜉𝔅�̃� + 𝜉ℭ�̃�) = 0,
 

for any �̃�, �̃� ∈ Γ(𝔇𝔗) and �̃� ∈ Γ(𝔇𝜃1 ⊕ 𝔇𝜃2). 

Proof. For all �̃�, �̃� ∈ Γ(𝔇𝔗) and �̃� ∈ Γ(𝔇𝜃1 ⊕ 𝔇𝜃2) with using equations (2.2), 

(2.13), (2.7) and decomposition (3.2), we have 

𝑔1([�̃�, �̃�], �̃�) = 𝑔1(∇�̃�𝜉𝔄�̃�, 𝐹𝔅�̃� + 𝐹ℭ�̃�) − 𝑔1(∇�̃�𝜉𝔄�̃�, 𝐹𝔅�̃� + 𝐹ℭ�̃�). 

(4.2) 
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By using equation (3.3), we finally have 

𝑔1([�̃�, �̃�], �̃�) = 𝑔1(𝒯�̃�𝜉𝔄�̃� − 𝒯�̃�𝜉𝔄�̃�, 𝜂𝔅�̃� + 𝜂ℭ�̃�)

 +𝑔1(𝒱∇�̃�𝜉𝔄�̃� − 𝒱𝒜�̃�𝜉𝔄�̃�, 𝜉𝔅�̃� + 𝜉ℭ�̃�).
 

This completes the proof of theorem. 

 

After discussing the prerequisites for distribution's integrability, it is time to 

examine the necessary and sufficient conditions that must also exists in order for 

distributions to be totally geodesic. We begin by looking at the condition of totally 

geodesicness for invariant distribution. 

Theorem 4.4. Let Ψ: (𝑄‾1, 𝑔1, 𝐹) → (𝑄‾2, 𝑔2) be a CQBS submersion, where 

(𝑄‾1, 𝑔1, 𝐹) a LPR manifold and (𝑄‾2, 𝑔2) a Riemannian manifold. Then invariant 

distribution 𝔇𝔗 defines totally geodesic foliation on 𝑄‾1 if and only if 

(i) 𝜆−2𝑔2 ((∇Ψ∗)(�̃�, 𝐹�̃�), Ψ∗𝜂�̃�) = 𝑔1(𝒱∇�̃�𝐹�̃�, 𝜉�̃�) 

(ii) 𝜆−2𝑔2 ((∇Ψ∗)(�̃�, 𝐹�̃�), Ψ∗𝐿�̃�) = 𝑔1(𝒱∇�̃�𝐹�̃�, 𝑃�̃�), 

for any �̃�, �̃� ∈ Γ(𝔇𝔗) and �̃� ∈ Γ(𝔇𝜃1 ⊕ 𝔇𝜃2). 

 

Proof. For any �̃�, �̃� ∈ Γ(𝔇𝔗) and �̃� ∈ Γ(𝔇𝜃1 ⊕ 𝔇𝜃2) with using equations (2.2), 

(2.3), (2.13) and (3.3), we may write 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(𝒱∇�̃�𝐹�̃�, 𝜉�̃�) + 𝑔1(𝒯�̃�𝐹�̃�, 𝜂�̃�). 

By using the conformality of Ψ with equation (2.14), we get 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(𝒱∇�̃�𝐹�̃�, 𝜉�̃�) − 𝜆−2𝑔2 ((∇Ψ∗)(�̃�, 𝐹�̃�), Ψ∗𝜂�̃�). 

On the other hand, using equations (2.2), (2.3) and (2.13) with conformality of Ψ, 

we finally have 
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𝑔1(∇�̃��̃�, �̃�) = 𝑔1(𝒱∇�̃�𝐹�̃�, 𝑃�̃�) − 𝜆−2𝑔2 ((∇Ψ∗)(�̃�, 𝐹�̃�), Ψ∗𝐿�̃�). 

This completes the proof of the theorem. 

In similar way, we can discuss the geometry of leaves of slant distribution 𝔇𝜃1  as 

follows: 

Theorem 4.5. Let Ψ be a CQBS submersion from 𝐿𝑃𝑅(𝑄‾1, 𝑔1, 𝐹) onto a 

Riemannian manifold (𝑄‾2, 𝑔2). Then slant distribution 𝔇𝜃1  defines totally 

geodesic foliation on 𝑄‾1 if and only if 

1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝔅�̃�), Ψ∗𝜂ℭ�̃�) −

1

𝜆2
𝑔2(∇�̃�

ΨΨ∗𝜂𝔅�̃�, Ψ∗𝜂ℭ�̃�)

 = 𝑔1(𝒯�̃�𝜂𝜉𝔅�̃�, �̃�) − 𝑔1(𝒯�̃�𝜂𝔅�̃�, 𝐹𝔄�̃�)

 − 𝑔1(𝒯�̃�𝜂𝔅�̃�, 𝜉ℭ�̃�) − cos2 𝜃1𝑔1(𝒱∇�̃�𝔅�̃�, �̃�)

 

and 

1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝜉𝔅�̃�), Ψ∗�̃�) +

1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝜉𝔅�̃�), Ψ∗𝐿�̃�)

=
1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝜉𝔅�̃�), Ψ∗�̃�) −

1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝜉𝔅�̃�), Ψ∗𝐿�̃�))

 + cos2 𝜃1𝑔1(∇�̃�𝔅�̃�, �̃�) + 𝑔1(𝒯�̃�𝜂𝜉𝔅�̃�, 𝑃�̃�),

 

for any �̃�, �̃� ∈ Γ(𝔇𝜃1), �̃� ∈ Γ(𝔇𝔗 ⊕ 𝔇𝜃2) and �̃� ∈ Γ(ker Ψ∗)⊥. 

Proof. By using equations (2.2), (2.3), (2.13) and (3.3), we get 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(∇�̃�𝜂𝔅�̃�, 𝐹(𝔄�̃� + ℭ�̃�)) + 𝑔1(𝐹∇�̃�𝜉𝔅�̃�, �̃�), 

for �̃�, �̃� ∈ Γ(𝔇𝜃1) and �̃� ∈ Γ(𝔇𝔗 ⊕ 𝔇𝜃2). Again using equations (2.2), (2.3), 

(2.13), (3.3), (2.8) with Lemma 3.2, we may write 

𝑔1(∇�̃��̃�, �̃�) = cos2 𝜃1𝑔1(∇�̃�𝔅�̃�, �̃�) + 𝑔1(𝒯�̃�𝜂𝜉𝔅�̃�, �̃�) + 𝑔1(𝒯�̃�𝜂𝔅�̃�, 𝐹𝔄�̃�)

 +𝑔1(𝒯�̃�𝜂𝔅�̃�, 𝜉ℭ�̃�) + 𝑔1(ℋ∇�̃�𝜂𝔅�̃�, 𝜂ℭ�̃�).
 

Since, Ψ is conformal, using Lemma 2.1 with equation (2.14), we have 

(4.3) 

(4.4) 

(4.5) 
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𝑔1(∇�̃��̃�, �̃�) = cos2 𝜃1𝑔1(∇�̃�𝔅�̃�, �̃�) + 𝑔1(𝒯�̃�𝜂𝜉𝔅�̃�, �̃�) + 𝑔1(𝒯�̃�𝜂𝔅�̃�, 𝐹𝔄�̃�)

 +𝑔1(𝒯�̃�𝜂𝔅�̃�, 𝜉ℭ�̃�) +
1

𝜆2
𝑔2(∇�̃�

ΨΨ∗𝜂𝔅�̃�, Ψ∗𝜂ℭ�̃�)

 −
1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝔅�̃�), Ψ∗𝜂ℭ�̃�) .

 

On the other hand, for �̃�, �̃� ∈ Γ(𝔇𝜃1) and �̃� ∈ Γ(ker Ψ∗)⊥, with using equations 

(2.2), (2.3), (2.13) and (3.3), we get 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(∇�̃�𝜉𝔅�̃�, 𝐹�̃�) + 𝑔1(∇�̃�𝜂𝔅�̃�, 𝐹�̃�). 

From Lemma 3.2 with equations (2.8) and (3.6), the above equation takes the 

form 

𝑔1(∇�̃��̃�, �̃�) = cos2 𝜃1𝑔1(∇�̃��̃��̃�, �̃�) + 𝑔1(ℋ∇�̃�𝜂𝜉𝔅�̃�, �̃�)

 +𝑔1(𝒯�̃�𝜂𝜉𝔅�̃�, 𝑃�̃�) + 𝑔1(ℋ∇�̃�𝜂𝜉𝔅�̃�, 𝐿�̃�).
 

Since Ψ is conformal and from equation (2.14), we have 

𝑔1(∇�̃��̃�, �̃�) =  −
1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝜉𝔅�̃�), Ψ∗�̃�) +

1

𝜆2
𝑔2(∇�̃�

ΨΨ∗𝜂𝜉𝔅�̃�, Ψ∗�̃�)

 −
1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝜉𝔅�̃�), Ψ∗𝐿�̃�) +

1

𝜆2
𝑔2(∇�̃�

ΨΨ∗𝜂𝜉𝔅�̃�, Ψ∗𝐿�̃�)

 +cos2 𝜃1𝑔1(∇�̃��̃�, �̃�) + 𝑔1(𝒯�̃�𝜂𝜉𝔅�̃�, 𝑃�̃�).

 

This completes the proof of theorem. 

 

Theorem 4.6. Let Ψ: (𝑄‾1, 𝑔1, 𝐹) → (𝑄‾2, 𝑔2) be a CQBS submersion, where 

(𝑄‾1, 𝑔1, 𝐹) a LPR manifold and (𝑄‾2, 𝑔2) a Riemannian manifold. Then slant 

distribution 𝔇𝜃2  defines totally geodesic foliation on 𝑄‾1 if and only if 

1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝔅�̃�), Ψ∗𝜂ℭ�̃�) −

1

𝜆2
𝑔2(∇�̃�

ΨΨ∗𝜂𝔅�̃�, Ψ∗𝜂ℭ�̃�)

 = 𝑔1(𝒯�̃�𝜂𝜉𝔅�̃�, �̃�) − 𝑔1(𝒯�̃�𝜂𝔅�̃�, 𝐹𝔄�̃�)

 − 𝑔1(𝒯�̃�𝜂𝔅�̃�, 𝜉ℭ�̃�) − cos2 𝜃1𝑔1(𝒱∇�̃�𝔅�̃�, �̃�),

 

and 

(4.6) 

(4.7) 
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1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝜉𝔅�̃�), Ψ∗�̃�) +

1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝜉𝔅�̃�), Ψ∗𝐿�̃�)

=
1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝜉𝔅�̃�), Ψ∗�̃�) −

1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝜉𝔅�̃�), Ψ∗𝐿�̃�))

 + cos2 𝜃2𝑔1(∇�̃�𝔅�̃�, �̃�) + 𝑔1(𝒯�̃�𝜂𝜉𝔅�̃�, 𝑃�̃�),

 

for any �̃�, �̃� ∈ Γ(𝔇𝜃2), �̃� ∈ Γ(𝔇𝔗 ⊕ 𝔇𝜃1) and �̃� ∈ Γ(ker Ψ∗)⊥. 

 

Proof. The proof of above theorem is similar to the proof of Theorem 4.5. 

 

Since, Ψ is CQBS-submersion, its vertical and horizontal distribution are (ker Ψ 

and (ker∗)⊥, respectively. Now, we examine the necessary and sufficient 

conditions under which distributions defines totally geodesic foliation on 𝑄‾1. 

With regards to the totally geodesicness of horizontal distribution, we have 

 

Theorem 4.7. Let Ψ be a CQBS submersion from LPR manifold (𝑄‾1, 𝑔1, 𝐹) onto 

a Riemannian manifold (𝑄‾2, 𝑔2). Then (ker Ψ∗)⊥ defines totally geodesic 

foliation on 𝑄‾1 if and only if 

1

𝜆2
{𝑔2(∇�̃�

ΨΨ∗𝜂𝔅�̃� + ∇�̃�
ΨΨ∗𝜂ℭ�̃�, Ψ∗𝜂�̃�)}

 = 𝑔1(𝒜�̃�𝜂𝜉𝔅�̃� + 𝒜�̃�𝜂𝜉ℭ�̃� + 𝒜�̃�𝜂𝜉𝔄�̃� + 𝒱∇�̃�𝔄�̃�, �̃�)

 +cos2 𝜃1𝑔1(𝒱∇�̃�𝔅�̃�, �̃�) + cos2 𝜃2𝑔1(𝒱∇�̃�ℭ�̃�, �̃�)

 +𝑔1(𝜂𝔅�̃�, 𝜂�̃�)𝑔1(�̃�, grad ln 𝜆) + 𝑔1(�̃�, 𝜂�̃�)𝑔1(𝜂𝔅�̃�, grad ln 𝜆)

 −𝑔1(�̃�, 𝜂𝔅�̃�)𝑔1(𝜂�̃�, grad ln 𝜆) + 𝑔1(𝜂ℭ�̃�, 𝜂�̃�)𝑔1(�̃�, grad ln 𝜆)

 +𝑔1(�̃�, 𝜂�̃�)𝑔1(𝜂ℭ�̃�, grad ln 𝜆) − 𝑔1(�̃�, 𝜂ℭ�̃�)𝑔1(𝜂�̃�, grad ln 𝜆), 

 

for any �̃�, �̃� ∈ Γ(ker Ψ∗)⊥ and �̃� ∈ Γ(ker Ψ∗). 

(4.8) 
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Proof. For any �̃�, �̃� ∈ Γ(ker Ψ∗)⊥ and �̃� ∈ Γ(ker Ψ∗) with using equations 

(2.2), (2.3) and (2.13) with decomposition (3.2), we get 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(∇�̃�𝐹(𝔄�̃�), 𝐹�̃�) + 𝑔1(∇�̃�𝐹(𝔅�̃�), 𝐹�̃�) + 𝑔1(∇�̃�𝐹(ℭ�̃�), 𝐹�̃�). 

From equations (3.3) and (2.9) with Lemma 3.2, we have 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(𝒱∇�̃�𝔄�̃�, �̃�) + cos2 𝜃1𝑔1(∇�̃�𝔅�̃�, �̃�) + cos2 𝜃2𝑔1(∇�̃�ℭ�̃�, �̃�)

 +𝑔1(∇�̃�𝜂𝜉𝔅�̃�, �̃�) + 𝑔1(∇�̃�𝜂𝔅�̃�, 𝐹�̃�) + 𝑔1(∇�̃�𝜂𝜉ℭ�̃�, �̃�)

 +𝑔1(∇�̃�𝜂ℭ�̃�, 𝐹�̃�) + 𝑔1(∇�̃�𝜂𝜉𝔄�̃�, �̃�)

 

By using the equations (3.3) and (2.10), we get 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(𝒱∇�̃�𝔄�̃� + cos2 𝜃1𝒱∇�̃�𝔅�̃� + cos2 𝜃2𝒱∇�̃�ℭ�̃�, �̃�)

 +𝑔1(𝒜�̃�𝜂𝜉𝔄�̃� + 𝒜�̃�𝜂𝜉𝔅�̃� + 𝒜�̃�𝜂𝜉ℭ�̃�, �̃�)

 +𝑔1(ℋ∇�̃�𝜂𝔅�̃� + ℋ∇�̃�𝜂ℭ�̃�, 𝜂�̃�)

 +𝑔1(𝒜�̃�𝜂𝔅�̃� + 𝒜�̃�𝜂ℭ�̃�, 𝜉�̃�). 

 

From formula (2.14), we yields that 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(𝒱∇�̃�𝔄�̃� + cos2 𝜃1𝒱∇�̃�𝔅�̃� + cos2 𝜃2𝒱∇�̃�ℭ�̃�, �̃�)

 +𝑔1(𝒜�̃�𝜂𝜉𝔄�̃� + 𝒜�̃�𝜂𝜉𝔅�̃� + 𝒜�̃�𝜂𝜉ℭ�̃�, �̃�)

 +
1

𝜆2
{𝑔2(∇�̃�

ΨΨ∗𝜂𝔅�̃� + ∇�̃�
ΨΨ∗𝜂ℭ�̃�, Ψ∗𝜂�̃�)}

 −
1

𝜆2
{𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝔅�̃�) + (∇Ψ∗)(�̃�, 𝜂ℭ�̃�), Ψ∗𝜂�̃�)}

 

Since Ψ is conformal submersion, then we finally get 
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𝑔1(∇�̃��̃�, �̃�) = −𝑔1(𝜂𝔅�̃�, 𝜂�̃�)𝑔1(�̃�, grad ln 𝜆) − 𝑔1(�̃�, 𝜂�̃�)𝑔1(𝜂𝔅�̃�, grad ln 𝜆)

 +𝑔1(�̃�, 𝜂𝔅�̃�)𝑔1(𝜂�̃�, grad ln 𝜆) − 𝑔1(𝜂ℭ�̃�, 𝜂�̃�)𝑔1(�̃�, grad ln 𝜆)

 −𝑔1(�̃�, 𝜂�̃�)𝑔1(𝜂ℭ�̃�, 𝑔𝑟𝑎𝑑ln 𝜆) + 𝑔1(�̃�, 𝜂ℭ�̃�)𝑔1(𝜂�̃�, grad ln 𝜆)

 +𝑔1(𝒱∇�̃�𝔄�̃� + cos2 𝜃1𝒱∇�̃�𝔅�̃� + cos2 𝜃2𝒱∇�̃�ℭ�̃�, �̃�)

 +𝑔1(𝒜�̃�𝜂𝜉𝔄�̃� + 𝒜�̃�𝜂𝜉𝔅�̃� + 𝒜�̃�𝜂𝜉ℭ�̃�, �̃�)

 +
1

𝜆2
{𝑔2(∇�̃�

ΨΨ∗𝜂𝔅�̃� + ∇�̃�
ΨΨ∗𝜂ℭ�̃�, Ψ∗𝜂�̃�)}.

 

This completes the proof of theorem. 

 

We can now talk about the geometry of leaves of horizontal distribution. The 

following theorem presents the necessary and sufficient condition under which 

vertical distribution defines totally geodesic foliation on 𝑄‾1. 

Theorem 4.8. Let Ψ: (𝑄‾1, 𝑔1, 𝐹) → (𝑄‾2, 𝑔2) be a CQBS submersion, where 

(𝑄‾1, 𝑔1, 𝐹) a LPR manifold and (𝑄‾2, 𝑔2) a Riemannian manifold. Then (ker Ψ∗) 

defines totally geodesic foliation on 𝑄‾1 if and only if 

1

𝜆2
{𝑔2(∇�̃�

ΨΨ∗𝜂𝜉𝔅�̃� + ∇�̃�
ΨΨ∗𝜂𝜉ℭ�̃�, Ψ∗�̃�)}

= 𝑔1(𝒯�̃�𝔄�̃� + cos2 𝜃1𝒯�̃�𝔅�̃� + cos2 𝜃2𝒯�̃�ℭ�̃�) + 𝑔1(𝒯�̃�𝜂�̃�, 𝑃�̃�)

 −
1

𝜆2
{𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝜉𝔅�̃�) + (∇Ψ∗)(�̃�, 𝜂𝜉ℭ�̃�), Ψ∗�̃�)}

 +
1

𝜆2
{𝑔2(∇�̃�

ΨΨ∗𝜂�̃� − (∇Ψ∗)(�̃�, 𝜂�̃�), Ψ∗𝐿�̃�)},

 

for any �̃�, �̃� ∈ Γ(ker Ψ∗) and �̃� ∈ Γ(ker Ψ∗)⊥. 

 

Proof. For any �̃�, �̃� ∈ Γ(ker Ψ∗) and �̃� ∈ Γ(ker Ψ∗)⊥ with using equations (2.2), 

(2.3), (2.13) with decomposition (3.2), we get 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(∇�̃�𝐹𝔄�̃�, 𝐹�̃�) + 𝑔1(∇�̃�𝐹𝔅�̃�, 𝐹�̃�) + 𝑔1(∇�̃�𝐹ℭ�̃�, 𝐹�̃�). 

By using equations (3.3) with Lemma 3.2 and Lemma 3.3, we have 

(4.9) 
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𝑔1(∇�̃��̃�, �̃�) = 𝑔1(∇�̃�𝔄�̃�, �̃�) + cos2 𝜃1𝑔1(∇�̃�𝔅�̃�, �̃�) + cos2 𝜃2𝑔1(∇�̃�ℭ�̃�, �̃�)

 +𝑔1(∇�̃�𝜂𝔅�̃�, 𝐹�̃�) + 𝑔1(∇�̃�𝜂𝜉𝔅�̃�, �̃�) + 𝑔1(∇�̃�𝜂𝜉ℭ�̃�, �̃�)

 +𝑔1(∇�̃�𝜂ℭ�̃�, 𝐹�̃�).

 

From equations (2.7), (2.8) and (3.6), we may yields 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(𝒯�̃�𝔄�̃� + cos2 𝜃1𝒯�̃�𝔅�̃� + cos2 𝜃2𝒯�̃�ℭ�̃�, �̃�)

 +𝑔1(ℋ∇�̃�𝜂𝜉𝔅�̃� + ℋ∇�̃�𝜂𝜉ℭ�̃�, �̃�)

 +𝑔1(ℋ∇�̃�𝜂𝔅�̃� + ℋ∇�̃�𝜂ℭ�̃�, 𝐿�̃�)

 +𝑔1(𝒯�̃�𝜂𝔅�̃� + 𝒯�̃�𝜂ℭ�̃�, 𝑃�̃�)

 

From decomposition (3.2), the above equation takes the form 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(𝒯�̃�𝔄�̃� + cos2 𝜃1𝒯�̃�𝔅�̃� + cos2 𝜃2𝒯�̃�ℭ�̃�, �̃�) + 𝑔1(𝒯�̃�𝜂�̃�, 𝑃�̃�)

 +𝑔1(ℋ∇�̃�𝜂𝜉𝔅�̃� + ℋ∇�̃�𝜂𝜉ℭ�̃�, �̃�) + 𝑔1(ℋ∇�̃�𝜂�̃�, 𝐿�̃�).
 

Using the conformality of Ψ with equation (2.14), we have 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(𝒯�̃�𝔄�̃� + cos2 𝜃1𝒯�̃�𝔅�̃� + cos2 𝜃2𝒯�̃�ℭ�̃�, �̃�) + 𝑔1(𝒯�̃�𝜂�̃�, 𝑃�̃�)

 −
1

𝜆2
{𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝜉𝔅�̃�) + (∇Ψ∗)(�̃�, 𝜂𝜉ℭ�̃�), Ψ∗�̃�)}

 −
1

𝜆2
{𝑔2(∇�̃�

ΨΨ∗𝜂𝜉𝔅�̃� + ∇�̃�
ΨΨ∗𝜂𝜉ℭ�̃�, Ψ∗�̃�)}

 +
1

𝜆2
{𝑔2(∇�̃�

ΨΨ∗𝜂�̃� − (∇Ψ∗)(�̃�, 𝜂�̃�), Ψ∗𝐿�̃�)}.

 

This completes the proof of the theorem. 

 

We now have some necessary and sufficient conditions for a CQBS submersion 

Ψ: 𝑄‾1 → 𝑄‾2 to be totally geodesic map. In this regard, we are presenting the 

following theorem. 

Theorem 4.9. Let Ψ be a CQBS submersion from 𝐿𝑃𝑅 manifold (𝑄‾1, 𝑔1, 𝐹) onto 

a Riemannian manifold (𝑄‾2, 𝑔2). Then Ψ: (𝑄‾1, 𝑔1, 𝐹) → (𝑄‾1, 𝑔2) is totally geodesic 

map if and only if 
(4.10) 

(4.11) 
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Ψ∗{cos2 𝜃1∇�̃�𝔅�̃� + cos2 𝜃2∇�̃�ℭ�̃� + ∇�̃�𝜂𝜉𝔅�̃� + ∇�̃�𝜂𝜉ℭ�̃�}

 = Ψ∗{𝐿(−ℋ∇�̃�𝜂𝔅�̃� − ℋ∇�̃�𝜂ℭ�̃� − 𝒯�̃�𝜉𝔄�̃�)}

 −Ψ∗{𝜂(𝒯�̃�𝜂𝔅�̃� + 𝒯�̃�𝜂ℭ�̃� + 𝒱∇�̃�𝜉𝔄�̃�)},

Ψ∗{cos2 𝜃1∇�̃�𝔅�̃� + cos2 𝜃2∇�̃�ℭ�̃� + ∇�̃�𝜂𝜉𝔅�̃� + ∇�̃�𝜂𝜉ℭ�̃�}

 = −Ψ∗{𝐿(𝒜�̃�𝜉𝔄�̃� + ℋ∇�̃�𝜂𝔅�̃� + ℋ∇�̃�𝜂ℭ�̃�)}

 −Ψ∗{𝜂(𝒱∇�̃�𝜉𝔄�̃� + 𝒜�̃�𝜂𝔅�̃� + 𝒜�̃�𝜂�̃��̃�)}

 

for any �̃�, �̃� ∈ Γ(ker Ψ∗) and �̃�, �̃� ∈ Γ(ker Ψ∗)⊥. 

 

Proof. Now, using equations (2.14), (2.3), (2.13) and (2.1). 

(∇Ψ∗)(�̃�, �̃�) = −Ψ∗(𝐹∇�̃�𝐹�̃�), 

for any �̃�, �̃� ∈ Γ(ker Ψ∗). From decomposition (3.2) and equation (3.3), we may 

write 

(∇Ψ∗)(�̃�, �̃�) = Ψ∗{−𝐹∇�̃�𝜉𝔄�̃� − 𝐹∇�̃�𝜉𝔅�̃� − 𝐹∇�̃�𝜂𝔅�̃�

−𝐹∇�̃�𝜉ℭ�̃� − 𝐹∇�̃�𝜂ℭ�̃�}.
 

By using equations (2.7) and (2.8), the above equation takes the form 

(∇Ψ∗)(�̃�, �̃�) = Ψ∗{−𝐹𝒯�̃�𝜉𝔄�̃� − 𝐹𝒱∇�̃�𝜉𝔄�̃�} − Ψ∗(∇�̃�𝐹𝜉𝔅�̃�)

 −Ψ∗{𝐹𝒯�̃�𝜂𝔅�̃� + 𝐹ℋ∇�̃�𝜂𝔅�̃�} − Ψ∗(∇�̃�𝐹𝜉ℭ�̃�)

 −Ψ∗{𝐹𝒯�̃�𝜂ℭ�̃� + 𝐹ℋ∇�̃�𝜂ℭ�̃�}.

 

Since Ψ is conformal submersion, by using Lemma 3.2 and Lemma 3.3 with 

equation (3.3), we finally get 

(∇Ψ∗)(�̃�, �̃�) = Ψ ∗ {𝐿(−ℋ∇�̃�𝜂𝔅�̃� − ℋ∇�̃�𝜂ℭ�̃� − 𝒯�̃�𝜉𝔄�̃�)

+𝜂(−𝒱∇�̃�𝜉𝔄�̃� − 𝒯�̃�𝜉𝔅�̃� − 𝒯�̃�𝜉ℭ�̃�)}

 −Ψ∗{cos2 𝜃1∇�̃�𝔅�̃� + cos2 𝜃2∇�̃�ℭ�̃� + ∇�̃�𝜂𝜉𝔅�̃� + ∇�̃�𝜂𝜉ℭ�̃�}
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From this, the (𝑖) part of theorem proved. On the other hand, for �̃� ∈ Γ(ker Ψ∗) 

and �̃� ∈ Γ(ker Ψ∗)⊥ with using equations (2.14), (2.3), (2.13) and (2.1), we can 

write 

(∇Ψ∗)(�̃�, �̃�) = −Ψ∗(𝐹∇�̃�𝐹�̃�). 

By using decomposition (3.2) with equation (3.3), we have 

(∇Ψ∗)(�̃�, �̃�) = −Ψ∗{𝐹(∇�̃�𝜉𝔄�̃� + ∇�̃�𝜉𝔅�̃� + ∇�̃�𝜂𝔅�̃� + ∇�̃�𝜉ℭ�̃� + ∇�̃�𝜂ℭ�̃�)}. 

By taking account the fact from equations (2.9) and (2.10), we get 

(∇Ψ∗)(�̃�, �̃�) =  −Ψ∗{𝐹(𝒜�̃�𝜉𝔄�̃� + 𝒱∇�̃�𝜉𝔄�̃� + ∇�̃�𝐹𝜉𝔅�̃�

 +𝐹(ℋ∇�̃�𝜂𝔅�̃� + 𝒜�̃�𝜂𝔅�̃�) + ∇�̃�𝐹𝜉ℭ�̃�

+𝐹(ℋ∇�̃�𝜂ℭ�̃� + 𝒜�̃�𝜂ℭ�̃�)}.

 

Finally, from conformality of Riemannian submersion Ψ and Lemma 3.2, Lemma 

3.3 , we can write 

(∇Ψ∗)(�̃�, �̃�) =  −Ψ∗{𝐿(𝒜�̃�𝜉𝔄�̃� + ℋ∇�̃�𝜂𝔅�̃� + ℋ∇�̃�𝜂ℭ�̃�)}

 −Ψ∗{𝜂(𝒱∇�̃�𝜉𝔄�̃� + 𝒜�̃�𝜂𝔅�̃� + 𝔄�̃�𝜂ℭ�̃�)}

 −Ψ∗(cos2 𝜃1∇�̃�𝔅�̃� + cos2 𝜃2∇�̃�ℭ�̃� + ∇�̃�𝜂𝜉𝔅�̃� + ∇�̃�𝜂𝜉ℭ�̃�).

 

From which we obtain (ii) part of theorem. This completes the proof of theorem. 

 

5 Decomposition Theorems 

 

In this section, we recall the following result from [22] and discuss some 

decomposition theorems. Let 𝑔 be a Riemannian metric tensor on the product 

manifold 𝑀 = 𝑄‾1 × 𝑄‾2 where 𝑄‾1 and 𝑄‾2 are two Riemannian manifold, then the 

from following conditions, it is easy to understand the concepts of locally product 

manifold and twisted product manifold. 
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(i) 𝑀 = 𝑄‾1 ×𝜆 𝑄‾2 is a locally product if and only if 𝑄‾1 and 𝑄‾2 are totally 

geodesic foliations, 

 

(ii) a warped product 𝑄‾1 ×𝑓 𝑄‾2 if and only if 𝑄‾1 is a totally geodesic 

foliation and 𝑄‾2 is a spherics foliation, i.e., it is umbilic and its mean 

curvature vector field is parallel, 

 

 

(iii) 𝑀 = 𝑄‾1 ×𝜆 𝑄‾2 is a twisted product if and only if 𝑄‾1 is a totally geodesic 

foliation and 𝑄‾2 is a totally umbilic foliation. 

The presence of three orthogonal complementary distributions 𝔇𝔗, 𝔇𝜃1, and 𝔇𝜃2, 

which are integrable and totally geodesic under the conditions that we have 

stated previously, is ensured by the fact that Ψ: (𝑄‾1, 𝑔1, 𝐹) → (𝑄‾2, 𝑔2) is CQBS 

submersion. It makes sense to now look for the conditions in which the total 

space 𝑄‾1 converts into locally product manifolds or locally twisted product 

manifolds. In order to explore the geometry of conformal bi-slant submersion Ψ, 

we are providing here a few decomposition theorems that state that 𝑄‾1 converts 

into locally product manifolds in a variety of situations. 

Theorem 5.1. Let Ψ: (𝑄‾1, 𝑔1, 𝐹) → (𝑄‾2, 𝑔2) be a CQBS submersion, where 

(𝑄‾1, 𝑔1, 𝐹) a LPR manifold and (𝑄‾2, 𝑔2) a Riemannian manifold. Then 𝑄‾1 is a 

locally product manifold if and only if 

1

𝜆2
{𝑔2(∇�̃�

ΨΨ∗𝜂𝜉𝔅�̃� + ∇�̃�
ΨΨ∗𝜂𝜉ℭ�̃�, Ψ∗�̃�)}

= 𝑔1(𝒯�̃�𝔄�̃� + cos2 𝜃1𝒯�̃�𝔅�̃� + cos2 𝜃2𝒯�̃�ℭ�̃�) + 𝑔1(𝒯�̃�𝜂�̃�, 𝑃�̃�)

 −
1

𝜆2
{𝑔2 ((∇Ψ∗)(�̃�, 𝜂𝜉𝔅�̃�) + (∇Ψ∗)(�̃�, 𝜂𝜉ℭ�̃�), Ψ∗�̃�)}

 +
1

𝜆2
{𝑔2(∇�̃�

ΨΨ∗𝜂�̃� − (∇Ψ∗)(�̃�, 𝜂�̃�), Ψ∗𝐿�̃�)}

 

and 

(5.1) 

(5.2) 
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1

𝜆2
{𝑔2(∇�̃�

ΨΨ∗𝜂𝔅�̃� + ∇�̃�
ΨΨ∗𝜂�̃��̃�, Ψ∗𝜂�̃�)}

 = 𝑔1(𝒜�̃�𝜂𝜉𝔅�̃� + 𝒜�̃�𝜂𝜉ℭ�̃� + 𝒜�̃�𝜂𝜉𝔄�̃�, �̃�)

 +𝑔1(𝒱∇�̃�𝔄�̃� + cos2 𝜃1𝒱∇�̃�𝔅�̃� + cos2 𝜃2𝒱∇�̃�ℭ�̃�, �̃�)

 +𝑔1(𝜂𝔅�̃�, 𝜂�̃�)𝑔1(�̃�, grad ln 𝜆) + 𝑔1(�̃�, 𝜂�̃�)𝑔1(𝜂𝔅�̃�, grad ln 𝜆)

 −𝑔1(�̃�, 𝜂𝔅�̃�)𝑔1(𝜂�̃�, grad ln 𝜆) + 𝑔1(𝜂ℭ�̃�, 𝜂�̃�)𝑔1(�̃�, grad ln 𝜆)

 +𝑔1(�̃�, 𝜂�̃�)𝑔1(𝜂ℭ�̃�, grad ln 𝜆) − 𝑔1(�̃�, 𝜂ℭ�̃�)𝑔1(𝜂�̃�, grad ln 𝜆), 

 

for any �̃�, �̃� ∈ Γ(ker Ψ∗) and �̃�, �̃� ∈ Γ(ker Ψ∗)⊥. 

 

Proof. The proof of this theorem is directly from Theorem 4.7 and Theorem 4.8 . 

Since we discussed in the previous theorem, given certain necessary and 

sufficient conditions, the total space 𝑄‾1 transforms into a locally product 

manifold. Now, it's intriguing to investigate if there are any circumstances under 

which the total space 𝑄‾1 could turn into a locally twisted product manifold. The 

conditions that turn total space 𝑄‾1 into a locally twisted product manifold are 

found in the following result. 

Theorem 5.2. Let Ψ be a CQBS submersion from LPR manifold (𝑄‾1, 𝑔1, 𝐹) onto 

a Riemannian manifold (𝑄‾2, 𝑔2). Then 𝑄‾1 is locally twisted product of the form 

𝑄‾1(ker Ψ∗) × 𝑄‾1(ker Ψ∗)⊥ if and only if 

1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂�̃�), Ψ∗𝐿�̃�) = 𝑔1(∇�̃�𝜉�̃�, 𝐹�̃�) + 𝑔1(𝒯�̃�𝜂�̃�, 𝑃�̃�)

+
1

𝜆2
𝑔2(∇�̃�

ΨΨ∗𝜂�̃�, Ψ∗𝐿�̃�).

 

and 

𝑔1(�̃�, �̃�)𝐻 =  −𝑃𝒜�̃�𝑃�̃� − 𝜉∇�̃�𝑃�̃� − 𝜉𝒜�̃�𝐿�̃� − 𝐹Ψ∗(∇�̃�
ΨΨ∗𝐿�̃�)

 +�̃�(ln 𝜆)𝑃𝐿�̃� + 𝐿�̃�(ln 𝜆)𝑃�̃� − 𝑃(grad ln 𝜆)𝑔1(�̃�, 𝐿�̃�).
 

where 𝐻 is a mean curvature vector and for any �̃�, �̃� ∈ Γ(ker Ψ∗) and �̃�1, �̃�2 ∈ 

Γ(ker Ψ∗)⊥. 

(5.3) 

(5.4) 
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Proof. For any �̃� ∈ Γ(ker Ψ∗)⊥ and �̃�, �̃� ∈ Γ(ker Ψ∗) and using equations (2.2), 

(2.3), (2.13), (2.7), (2.8) (3.3) and (3.6), we have 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(∇�̃�𝜉�̃�, 𝐹�̃�) + 𝑔1(𝒯�̃�𝜂�̃�, 𝑃�̃�) + 𝑔1(ℋ∇�̃�𝜂�̃�, 𝐿�̃�). 

From using formula (2.14) and definition of conformality, the above equation 

takes place as 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(∇�̃�𝜉�̃�, 𝐹�̃�) + 𝑔1(𝒯�̃�𝜂�̃�, 𝑃�̃�) −
1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝜂�̃�), Ψ∗𝐿�̃�)

 +
1

𝜆2
𝑔2(∇�̃�

ΨΨ∗𝜂�̃�, Ψ∗𝐿�̃�).

 

It follows that the equation (5.3) satisfies if and only if 𝑄‾1(ker Ψ∗) is totally 

geodesic. On the other hand, for �̃� ∈ Γ(ker Ψ∗) and �̃�, �̃� ∈ Γ(ker Ψ∗)⊥ with using 

equations (2.2), (2.13), (2.3) (2.10), (3.3) and (3.6), we get 

𝑔1(∇�̃��̃�, �̃�) = 𝑔1(∇�̃�𝑃�̃�, 𝐹�̃�) + 𝑔1(𝒜�̃�𝐿�̃�, 𝜉�̃�) + 𝑔1(ℋ∇�̃�𝐿�̃�, 𝜂�̃�). 

By using the equation (2.14) with definition of conformality of Ψ, we deduce that 

𝑔1(∇�̃��̃�, �̃�) =  −
1

𝜆2
𝑔2 ((∇Ψ∗)(�̃�, 𝐿�̃�), Ψ∗𝜂�̃�) +

1

𝜆2
𝑔2(∇�̃�

ΨΨ∗𝐿�̃�, Ψ∗𝜂�̃�)

 +𝑔1(∇�̃�𝑃�̃�, 𝐹�̃�) + 𝑔1(𝒜�̃�𝐿�̃�, 𝜉�̃�)
 

Considering the (𝑖) part of Lemma 2.1, above equation turns in to 

𝑔1(∇�̃��̃�, �̃�) =
1

𝜆2
𝑔2(∇�̃�

ΨΨ∗𝐿�̃�, Ψ∗𝜂�̃�) + 𝑔1(∇�̃�𝑃�̃�, 𝐹�̃�) + 𝑔1(𝒜�̃�𝐿�̃�, 𝜉�̃�)

 −𝑔1(grad ln 𝜆, �̃�)𝑔1(𝐿�̃�, 𝜂�̃�) − 𝑔1(grad ln 𝜆, 𝐿�̃�)𝑔1(�̃�, 𝜂�̃�)

 +𝑔1(grad ln 𝜆, 𝜂�̃�)𝑔1(�̃�, 𝐿�̃�).

 

By direct calculation, finally we get 

𝑔1(�̃�, �̃�)𝐻 =  −𝑃𝒜�̃�𝑃�̃� − 𝜉∇�̃�𝑃�̃� − 𝜉𝒜�̃�𝐿�̃� − 𝐹Ψ∗(∇�̃�
ΨΨ∗𝐿�̃�) + �̃�(ln 𝜆)𝑃𝐿�̃�

 +𝐿�̃�(ln 𝜆)𝑃�̃� − 𝑃(grad ln 𝜆)𝑔1(�̃�, 𝐿�̃�).
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From the above equation we conclude that 𝑄‾1(ker Ψ∗)⊥  is totally umbilical if and 

only if equation (5.4) satisfied. This completes the proof of the theorem. 

 

6 -Pluriharmonicity of Conformal Quasi Bi-slant 

Submersion 

In this section, we extend the concept of 𝐹-pluriharmonicity to almost product 

Riemannian manifolds and definition of Hermitian manifold. 

Definition 6.1. On a manifold 𝑀, a pair (𝐽, 𝑔) consisting of a complex structure 𝐽 

on 𝑀 and a Hermitian metric 𝑔 in the tangent space 𝑇𝑀, that is, a Riemannian 

metric 𝑔 that is invariant under 𝐽, 𝑔(𝐽𝑋, 𝐽𝑌) = 𝑔(𝑋, 𝑌) for any vector fields 𝑋 and 𝑌 

on 𝑀. A Hermitian structure specifies in any tangent space 𝑇𝑝𝑀 the structure of a 

Hermitian vector space. A manifold with a Hermitian structure is called a 

Hermitian manifold. 

Let Ψ be a CQBS Riemannian submersion from 𝐿𝑃𝑅 manifold (𝑄‾1, 𝑔1, 𝐹) onto a 

Riemannian manifold (𝑄‾2, 𝑔2) with slant angles 𝜃1 and 𝜃2. Then CQBS 

Riemannian submersion is 𝔇𝔗 − 𝐹-pluriharmonic, 𝔇𝜃1 − 𝐹-pluriharmonic, 𝔇𝜃2 − 

𝐹-pluriharmonic, (𝔇𝔗 − 𝔇𝜃1) − 𝐹 pluriharmonic, (𝔇𝔗 − 𝔇𝜃2) − 𝐹 pluriharmonic, 

ker Ψ∗ − 𝐹-pluriharmonic, (ker Ψ∗)⊥ − 𝐹-pluriharmonic and ((ker Ψ∗)⊥ − 

ker Ψ∗) − 𝐹-pluriharmonic if 

(∇Ψ∗)(𝑈, 𝑉) + (∇Ψ∗)(𝐹𝑈, 𝐹𝑉) = 0, 

for any 𝑈, 𝑉 ∈ Γ(𝔇𝔗), for any 𝑈, 𝑉 ∈ Γ(𝔇𝜃1), for any 𝑈, 𝑉 ∈ Γ(𝔇𝜃2), for any 𝑈 ∈

Γ(𝔇𝔗), 𝑉 ∈ Γ(𝔇𝜃1), for any 𝑈 ∈ Γ(𝔇𝔗), 𝑉 ∈ Γ(𝔇𝜃2), for any 𝑈, 𝑉 ∈ Γ(ker Ψ∗), for 

any 𝑈, 𝑉 ∈ Γ(ker Ψ∗)⊥ and for any 𝑈 ∈ Γ(ker Ψ∗)⊥, 𝑉 ∈ Γ(ker Ψ∗), respectively. 

F 

(6.1) 
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Theorem 6.1. Let Ψ be a CQBS submersion from LPR manifold (𝑄‾1, 𝑔1, 𝐹) onto 

a rm (𝑄‾2, 𝑔2) with slant angles 𝜃1 and 𝜃2. Suppose that Ψ is 𝔇𝜃1 − 𝐹 

pluriharmonic. Then 𝔇𝜃1  defines totally geodesic foliation on 𝑄‾1 if and only 

if 

Ψ∗(𝜂𝒯𝜉�̃�𝜂𝜉�̃� + 𝐿ℋ∇𝜉�̃�𝜂𝜉�̃�) − Ψ∗(𝒜𝜂�̃�𝜉�̃� + ℋ∇𝜉�̃�𝜂�̃�)

 = cos2 𝜃1Ψ∗(𝐿𝒯𝜉�̃��̃� + 𝜂𝒱∇𝜉�̃��̃�) + ∇𝜉�̃�
Ψ Ψ∗𝐹�̃�

 − 𝜂�̃�(ln 𝜆)Ψ∗𝜂�̃� − 𝜂�̃�(ln 𝜆)Ψ∗𝜂�̃� + 𝑔1(𝜂�̃�, 𝜂�̃�)Ψ∗(grad ln 𝜆)

 

for any �̃�, �̃� ∈ Γ(𝔇𝜃1). 

Proof. For any �̃�, �̃� ∈ Γ(𝔇𝜃1) and since, Ψ is 𝐷𝜃1 − 𝐹-pluriharmonic, then by 

using equation (2.7) and (2.14), we have 

0 = (∇Ψ∗)(�̃�, �̃�) + (∇Ψ∗)(𝐹�̃�, 𝐹�̃�)

Ψ∗(∇�̃��̃�) = −Ψ∗(∇𝐹�̃�𝐹�̃�) + ∇𝐹�̃�
Ψ Ψ∗(𝐹�̃�)

 = −Ψ∗(𝒜𝜂�̃�𝜉�̃� + 𝒱∇𝜂�̃�𝜉�̃� + 𝒯𝜉�̃�𝜂�̃� + ℋ∇𝜉�̃�𝜂�̃�) − Ψ∗(𝐹∇𝜉�̃�𝐹𝜉�̃�)

 +(∇Ψ∗)(𝜂�̃�, 𝜂�̃�) − ∇𝜂�̃�
Ψ Ψ∗𝜂�̃� + ∇𝐹�̃�

Ψ Ψ∗𝐹�̃�.

 

By using equations (3.3), (3.6) with Lemma 2.1 and Lemma 3.2, the above 

equation finally takes the form 

Ψ∗(∇�̃�𝑉) =  −cos2 𝜃1Ψ∗(𝑃𝒯𝜉�̃��̃� + 𝐿𝒯𝜉�̃��̃� + 𝜉𝒱∇𝜉�̃��̃� + 𝜂𝒱∇𝜉�̃��̃�)

 +Ψ∗(𝜉𝒯𝜉�̃�𝜂𝜉�̃� + 𝜂𝒯𝜉�̃�𝜂𝜉�̃� + 𝑃ℋ∇𝜉�̃�𝜂𝜉�̃� + 𝐿ℋ∇𝜉�̃�𝜂𝜉�̃�)

 −Ψ∗(𝒜𝜂�̃�𝜉�̃� + 𝒱∇𝜂�̃�𝜉�̃� + 𝒯𝜉�̃�𝜂�̃� + ℋ∇𝜉�̃�𝜂�̃�)

 +𝜂�̃�(ln 𝜆)Ψ∗𝜂�̃� + 𝜂�̃�(ln 𝜆)Ψ∗𝜂�̃� − 𝑔1(𝜂�̃�, 𝜂�̃�)Ψ∗(grad ln 𝜆)

 −∇𝜂�̃�
Ψ Ψ∗𝜂�̃� + ∇𝐹�̃�

Ψ Ψ∗𝐹�̃�

 

from which we get the desired result. 

 

Theorem 6.2. Let Ψ be a CQBS submersion from LPR manifold (𝑄‾1, 𝑔1, 𝐹) onto 

a rm (𝑄‾2, 𝑔2) with slant angles 𝜃1 and 𝜃2. Suppose that Ψ is 𝔇𝜃2 − 𝐹 

pluriharmonic. Then 𝔇𝜃2  defines totally geodesic foliation on 𝑄‾1 if and only if 



The Islamic University Journal of Applied Sciences (JESC) Issue II, Volume V, December 2023 

150 
 

Ψ∗(𝜂𝒯𝜉�̃�𝜂𝜉�̃� + 𝐿ℋ∇𝜉�̃�𝜂𝜉�̃�) − Ψ∗(𝒜𝜂�̃�𝜉�̃� + ℋ∇𝜉�̃�𝜂�̃�)

 = cos2 𝜃2Ψ∗(𝐿𝒯𝜉�̃��̃� + 𝜂�̃�∇𝜉�̃��̃�) + ∇𝜉�̃�
Ψ Ψ∗𝐹�̃�

 − 𝜂�̃�(ln 𝜆)Ψ∗𝜂�̃� − 𝜂�̃�(ln 𝜆)Ψ∗𝜂�̃� + 𝑔1(𝜂�̃�, 𝜂�̃�)Ψ∗(grad ln 𝜆)

 

for any �̃�, �̃� ∈ Γ(𝔇𝜃2). 

 

Proof. The proof of the theorem is similar to the proof of Theorem 6.1. 

Theorem 6.3. Let Ψ be a CQBS submersion from LPR manifold (𝑄‾1, 𝑔1, 𝐹) onto 

a rm (𝑄‾2, 𝑔2) with slant angles 𝜃1 and 𝜃2. Suppose that Ψ is ((𝑘𝑒𝑟Ψ∗)⊥ − ker Ψ∗) −

𝐹-pluriharmonic. Then the following assertion are equivalent. 

(i) The horizontal distribution (𝑘𝑒𝑟Ψ∗)⊥ defines totally geodesic foliation on 𝑄‾1. 

(cos2 𝜃1 + cos2 𝜃2)Ψ∗{𝐿𝒯𝑃�̃�𝜉𝔄�̃� + 𝜂𝒱∇𝑃�̃�𝜉𝔄�̃� + 𝐿𝒜𝐿�̃�𝜉𝔄�̃� + 𝜂𝒱∇𝐿�̃�𝜉𝔄�̃�}

 = Ψ∗{𝐿𝒯𝑃�̃�𝜉𝔄�̃� + 𝜂𝒱∇𝑃�̃�𝜉𝔄�̃� + 𝐿𝒜𝐿�̃�𝜉𝔄�̃� + 𝜂ℋ∇𝐿�̃�𝜉𝔄�̃�}

 −Ψ∗{𝜂𝒯𝑃�̃�𝜂𝜉𝔅�̃� + 𝐿ℋ∇𝑃�̃�𝜂𝜉𝔅�̃� + 𝜂𝒯𝑃�̃�𝜂𝜉ℭ�̃� + 𝐿ℋ∇𝑃�̃�𝜂𝜉ℭ�̃�}

 +𝐿�̃�(ln 𝜆)Ψ∗𝜂𝜉𝔅�̃� + 𝜂𝜉𝔅�̃�(ln 𝜆)Ψ∗𝐿�̃� − 𝑔1(𝐿�̃�, 𝜂𝜉𝔅�̃�)Ψ∗(grad ln 𝜆)

 +𝐿�̃�(ln 𝜆)Ψ∗𝜂𝜉ℭ�̃� + 𝜂𝜉ℭ�̃�(ln 𝜆)Ψ∗𝐿�̃� − 𝑔1(𝐿�̃�, 𝜂𝜉ℭ�̃�)Ψ∗(grad ln 𝜆)

 −Ψ∗{𝜂𝒜𝐿�̃�𝜂𝜉𝔅�̃� + 𝜂𝒜𝐿�̃�𝜂𝜉ℭ�̃� − ℋ∇𝑃�̃�𝜂�̃�} − ∇𝐿�̃�
Ψ Ψ∗𝜂𝜉𝔅�̃�

 +Ψ∗(∇�̃��̃�) + ∇𝐹�̃�
Ψ Ψ∗𝜂�̃� − ∇𝐿�̃�

Ψ Ψ∗𝜂𝜉�̃��̃�,

 

(ii) 

 +𝐿�̃�(ln 𝜆)Ψ∗𝜂𝜉𝔅�̃� + 𝜂𝜉𝔅�̃�(ln 𝜆)Ψ∗𝐿�̃� − 𝑔1(𝐿�̃�, 𝜂𝜉𝔅�̃�)Ψ∗(grad ln 𝜆)

 +𝐿�̃�(ln 𝜆)Ψ∗𝜂𝜉ℭ�̃� + 𝜂𝜉ℭ�̃�(ln 𝜆)Ψ∗𝐿�̃� − 𝑔1(𝐿�̃�, 𝜂𝜉ℭ�̃�)Ψ∗(grad ln 𝜆)

 −Ψ∗{𝜂𝒜𝐿�̃�𝜂𝜉𝔅�̃� + 𝜂𝒜𝐿�̃�𝜂𝜉ℭ�̃� − ℋ∇𝑃�̃�𝜂�̃�} − ∇𝐿�̃�
Ψ Ψ∗𝜂𝜉𝔅�̃�

 +Ψ∗(∇�̃��̃�) + ∇𝐹�̃�
Ψ Ψ∗𝜂�̃� − ∇𝐿�̃�

Ψ Ψ∗𝜂𝜉�̃��̃�

 

for any �̃� ∈ Γ(ker Ψ∗)⊥ and �̃� ∈ Γ(𝑘𝑒𝑟Ψ∗) 

 

Proof. For any �̃� ∈ Γ(𝑘𝑒𝑟Ψ∗)⊥ and �̃� ∈ Γ(𝑘𝑒𝑟Ψ∗), since Ψ is ((𝑘𝑒𝑟Ψ∗)⊥ − 𝑘𝑒𝑟Ψ∗) −

𝐹-pluriharmonic, then by using (2.14), (3.3) and (3.6), we get 
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Ψ∗(∇𝐿�̃�𝜂�̃�) = −Ψ∗(∇𝑃�̃�𝜉�̃� + ∇𝑃�̃�𝜂�̃� + ∇𝐿�̃�𝜉�̃�) + Ψ∗(∇�̃��̃�) + ∇𝐹�̃�
Ψ Ψ∗𝜂�̃�. 

Taking account the fact from (2.1) and (2.8), we have 

Ψ∗(∇𝐿�̃�𝜂�̃�) =  −Ψ∗(𝒯𝑃�̃�𝜂�̃� + ℋ∇𝑃�̃�𝜂�̃�) + Ψ∗(∇�̃��̃�) + ∇𝐹�̃�
Ψ Ψ∗𝜂�̃�

 −Ψ∗(𝐹∇𝑃�̃�𝐹𝜉�̃�) − Ψ∗(𝐹∇𝐿�̃�𝐹𝜉�̃�)
 

Now on using decomposition (3.2), Lemma 3.2, Lemma 3.3 with equations (3.3), 

we may yields 

Ψ∗(∇𝐿�̃�𝜂�̃�) = Ψ∗{𝐹∇𝑃�̃�𝜂𝜉𝔅�̃� + 𝐹∇𝑃�̃�𝜂𝜉ℭ�̃� + 𝐹∇𝐿�̃�𝜂𝜉𝔅�̃� + 𝐹∇𝐿�̃�𝜂𝜉ℭ�̃�}

Ψ∗{𝐹∇𝑃�̃�𝜉𝔄�̃� − cos2 𝜃1𝐹∇𝑃�̃�𝜉�̃� − cos2 𝜃2𝐹∇𝑃�̃�𝜉�̃�}

 +Ψ∗{𝐹∇𝐿�̃�𝜉𝔄�̃� − cos2 𝜃1𝐹∇𝐿�̃�𝜉�̃� − cos2 𝜃2𝐹∇𝐿�̃�𝜉�̃�}

 −Ψ∗(ℋ∇𝑃�̃�𝜂�̃�) + Ψ∗(∇�̃��̃�) + ∇𝐹�̃�
Ψ Ψ∗𝜂�̃�

 

From equations (2.7)-(2.10) and after simple calculation, we may write 

Ψ∗(∇𝐿�̃�𝜂�̃�) =  −(cos2 𝜃1 + cos2 𝜃2)Ψ∗{𝐿𝒯𝑃�̃�𝜉𝔄�̃� + 𝜂𝒱∇𝑃�̃�𝜉𝔄�̃� + 𝐿𝒜𝐿�̃�𝜉𝔄�̃�

+𝜂𝒱∇𝐿�̃�𝜉𝔄�̃�} − Ψ∗{𝜂𝒜𝐿�̃�𝜂𝜉𝔅�̃� + 𝜂𝒜𝐿�̃�𝜂𝜉ℭ�̃� − ℋ∇𝑃�̃�𝜂�̃�}

 +Ψ∗{𝐿𝒯𝑃�̃�𝜉𝔄�̃� + 𝜂𝒱∇𝑃�̃�𝜉𝔄�̃� + 𝐿𝒜𝐿�̃�𝜉𝔄�̃� + 𝜂ℋ∇𝐿�̃�𝜉𝔄�̃�}

 −Ψ∗{𝜂𝒯𝑃�̃�𝜂𝜉𝔅�̃� + 𝐿ℋ∇𝑃�̃�𝜂𝜉𝔅�̃� + 𝜂𝒯𝑃�̃�𝜂𝜉ℭ�̃� + 𝐿ℋ∇𝑃�̃�𝜂𝜉ℭ�̃�}

 −Ψ∗(𝐿ℋ∇𝐿�̃�𝜂𝜉𝔅�̃� + 𝐿ℋ∇𝐿�̃�𝜂𝜉𝔅�̃�) + Ψ∗(∇�̃��̃�) + ∇𝐹�̃�
Ψ Ψ∗𝜂�̃�

 

Since Ψ is conformal Riemannian submersion, the by using equations (2.14) and 

from Lemma 2.1, we finally have 

Ψ∗(∇𝐿�̃�𝜂�̃�) = −(cos2 𝜃1 + cos2 𝜃2)Ψ∗{𝐿𝒯𝑃�̃�𝜉𝔄�̃� + 𝜂𝒱∇𝑃�̃�𝜉𝔄�̃� + 𝐿𝒜𝐿�̃�𝜉𝔄�̃�

+𝜂𝒱∇𝐿�̃�𝜉𝔄�̃�} − Ψ∗{𝜂𝒜𝐿�̃�𝜂𝜉𝔅�̃� + 𝜂𝒜𝐿�̃�𝜂𝜉ℭ�̃� − ℋ∇𝑃�̃�𝜂�̃�}

 +Ψ∗{𝐿𝒯𝑃�̃�𝜉𝔄�̃� + 𝜂𝒱∇𝑃�̃�𝜉𝔄�̃� + 𝐿𝒜𝐿�̃�𝜉𝔄�̃� + 𝜂ℋ∇𝐿�̃�𝜉𝔄�̃�}

 −Ψ∗{𝜂𝒯𝑃�̃�𝜂𝜉𝔅�̃� + 𝐿ℋ∇𝑃�̃�𝜂𝜉𝔅�̃� + 𝜂𝒯𝑃�̃�𝜂𝜉ℭ�̃� + 𝐿ℋ∇𝑃�̃�𝜂𝜉ℭ�̃�}

 +𝐿�̃�(ln 𝜆)Ψ∗𝜂𝜉𝔅�̃� + 𝜂𝜉𝔅�̃�(ln 𝜆)Ψ∗𝐿�̃� − 𝑔1(𝐿�̃�, 𝜂𝜉𝔅�̃�)Ψ∗(grad ln 𝜆)

 +𝐿�̃�(ln 𝜆)Ψ∗𝜂𝜉�̃��̃� + 𝜂𝜉�̃��̃�(ln 𝜆)Ψ∗𝐿�̃� − 𝑔1(𝐿�̃�, 𝜂𝜉�̃��̃�)Ψ∗(grad ln 𝜆)

 +Ψ∗(∇�̃��̃�) + ∇𝐹�̃�
Ψ Ψ∗𝜂�̃� − ∇𝐿�̃�

Ψ Ψ∗𝜂𝜉𝔅�̃� − ∇𝐿�̃�
Ψ Ψ∗𝜂𝜉ℭ�̃�,

 

which completes the proof of theorem. 
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