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1 Introduction

Both mathematics and physics employ immersions and submersions extensively.
Yang-Mills theory ([6], [29]), Kaluza-Klein theory ([12], [15]) are the significant
application of submersion. The characteristics of slant submersions have become
a fascinating topic in differential geometry, as well as in complex and contact
geometry. The concept of Riemannian submersion between Riemannian
manifolds has been extensively studied by prominent mathematicians such as B.
O'Neill [17] and A. Gray [8], who independently made significant contributions to
this field. In 1976, B. Watson [28], introduced the notion of almost Hermitian
submersions, which focuses on the submersion between almost Hermitian
manifolds. Since then, they have been widely used in differential geometry to study

Riemannian manifolds having differentiable structures [26].

D. Chinea [7] introduced the concept of almost contact Riemannian submersions
between almost contact metric manifolds. In his work, Chinea extensively
examined the differential geometric aspects of the fiber space, base space, and total
space involved in these submersions. A step forward, R Prasad et. al. studied quasi
bi-slant submersions from almost contact metric manifolds onto Riemannian
manifolds [21], [19], [14]. As a generalization of Riemannian submersions, Fuglede
[9] and Ishihara [13], separately studied horizontally conformal submersions.
Later on, many authors investigated different kinds of conformal Riemannian
submersions like conformal anti-invariant submersions ([4], conformal slant
submersions [3], conformal semi-slant submersions ([2], [11], [18]) and conformal
hemi-slant submersions ([27], [1]) etc. from almost Hermitian manifolds onto a
Riemannian manifold. Most of these Riemannian submersions and conformal
submersions are also studied from almost contact metric manifolds onto a

Riemannian manifold.

In this paper, we study conformal quasi bi-slant submersions from locally product
Riemannian manifold onto a Riemannian manifold. This paper is divided into six

sections. Section 2 contains brief history of Riemannian and conformal
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submersions. Also, we recall almost product Riemannian manifolds and, in
particular, locally product Riemannian manifolds. In section 3, we investigate
some fundamental results for conformal quasi bi-slant submersions from locally
product Riemannian manifolds onto a Riemannian manifold those are required for
our main sections. The results of integrability and totally geodesicness of
distributions are presented in Section 4. In section 5, we discuss some
decomposition theorems and also conditions under which locally product
Riemannian manifold turns into locally twisted product manifold. While last
section is devoted to the study of pluriharmonicity of conformal quasi bi-slant
submersion.

Note: We will use some abbreviations throughout the paper as follows: locally
product Riemannian manifold- LPR manifold, Conformal quasi bi-slant

submersion- CQBS submersion,

2 Preliminaries

In this section, we will discuss the concept of almost product Riemannian
manifold and also, Riemannian submersions and conformal submersions
between two Riemannian manifolds with some basic facts and results. These
concepts have been previously introduced in the earlier work in this field, so we
mentioned them in quotation and proper references have been provided to
acknowledge their contributions. Furthermore, the definitions have been restated
here to ensure clarity and facilitate a comprehensive understanding of the
concepts presented in this study.

"An n-dimensional manifold Q with (1,1) type tensor field F such that
F?2=1,(F#1), (2.1)

is called an almost product manifold with almost structure F. There exists a
Riemannian metric g on an almost product manifold which is compatible with

the structure F in the sense that
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g(FU,FV) = g(U,V),

(2.2)

for any U,V € T(TM), then (Q, g, F) is called an almost product Riemannian

manifold. The covariant derivative of F defined by

(VyFV) =V FV — FV,V
(2.3)

for any vector fields U,V € T'(TQ). The manifold is called locally product

Riemannian ( LPR) manifold if F is parallel with respect to connection V.e.,
(V.UF)V =0 (2.4)

for any vector fields U,V € T'(TQ).

Let W: (Qq, 91, F) — (Q,, g,) be a Riemannian submersion. A vector field X on 0, is

called a basic vector field if X € I'(ker ¥,)* and W-related with a vector field X on
Qzi.e., ¥.(X(q)) = X¥(q) forq € Q,."

The formulae given by O'Neill [17] of two (1,2) tensor fields T and A, plays a

crucial role in the theory of submersions
(2.5)
Ap, Fy = HV35 VF; + Vg HFy, (2.6)
Tp, Fy = HVyp, VF| + VVyp HF,

for any E;, F; € I'(TQ,) and V is Levi-Civita connection of g,. Note that a

Riemannian submersion ¥: (Q4, g, F) — (Q,, g,) has totally geodesic fibers if and

only if " vanishes identically. From (2.5) and (2.6), we can deduce 2.7)
B B _ (2.8)

Vﬁlvl =Tl71V1+VVl71V1 (29)

Vg, X1 =T, X1 +HVy Xy (2.10

V}?lfjl = dq)?lfjl + Vlv)?lfjl
Vi i =HVg Vi +Ag 1
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for any vector fields U, V; € I'(ker¥,) and X;,¥; € I'(ker ¥,)*.

It is observe that 7 and A are skew-symmetric, that is,
9(AzE F) = —g(Ey, AgFy), g(TyEy, Fy) = —g(Ey, Ty Fy), (2.11)

for any vector fields E;, F; € I'(T,0Q,). Itis also observed that the restriction of T
to the vertical distribution 7|, is exactly the second fundamental form of the
fibres of W. Since 7y, is skew-symmetric we say W has totally geodesic fibres if and
only if 7 = 0. For the special case when V¥ is horizontally conformal submersion

we have "

Proposition 2.1. [10] Let ¥: (Q,, g;) — (03, g,) be a horizontally conformal

submersion with dilation A and X, Y be the horizontal vectors, then

AxY =1 [V[X, Y] - 229, (X, V)grad ()|

(2.12)

We see that the skew-symmetric part of measures the obstruction integrability of

the horizontal distribution (ker ¥,)*.

Definition 2.1. A horizontally conformally submersion ¥: Q; — Q, is called

horizontally homothetic if the gradient of its dilation A is vertical, i.e.,
(2.13)
H(grad 1) =0,

where H is the orthogonal complementary distribution to v = ker ¥, in T (Tp Q).

The second fundamental form of smooth map W is given by
(2.14)

(V¥)(0,, V) = Vg W7, — WV, 7,

and the map be totally geodesic if (V¥,)(U,,V,) = 0 for all T,, V; € I'(T,Q,), where

V and VY, are Levi-Civita and pullback connections.”
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Now, we recall the following lemma for our main section.

Lemma 2.1. Let ¥: Q; — Q, be a horizontal conformal submersion. Then, we

have

@) (V) (X, 1) = Xi(n D)W, (7)) + Vi (n HW.(X;) — g1(X1, V1) W.(grad In 2),
(i) (VW) (T, 7,) = —W.(75, 7)),

(i) (VW)(X,, Uy) = —W.(Vx,0,) = —W. (A, Ty),

for any horizontal vector fields X;, ¥; and vertical vector fields U;, V;[5].
3 Conformal quasi bi-slant submersions

First of all we are giving in this sections some definitions that will useful

througout the text.

Definition 3.1. [28] Let ¥: (04, go,) = (@2, go,) be a smooth map between two
Riemannian manifolds having dimensions m, and m,, respectively. Then ¥ is
called horizontally weakly conformal or semi conformal at x € Q, if either

@)WY, =0,or
(ii) ¥,, maps horizontal space H, = (ker(ll’*x))l conformally onto Ty, (N) 1 (3 1)

is surjective and there exits a number A(x) # 0 such that
InN (lp*fo lIJ*xY) = A(x)g(X, Y)'

for any X,Y € H,.

Equation (3.1) can be re-written as

(W gn)x |33, = Ax)G(xX) |3, x3¢,.-
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A point x satisfies (i) in above definition if and only if it is a critical point of ¥. A
point, satisfying (ii) is called a regular point. At a critical point, ¥,, has rank o ; at
a regular point, ¥,, has rank n and ¥ defines a submersion. The number A(x) is
called the square dilation (of W at x ); it is necessarily nonnegative. Its square
root A(x) = \/Tx) is called the dilation of W at x. The map W is called horizontally
weakly conformal or semi conformal on Q, if it is horizontally weakly conformal
at every point of M. It is clear that if W has no critical points, then we call it a

(horizontally) conformal submersion.

Definition 3.2 | . Let us suppose that (Q,, g1, F) be an almost product manifold

and (Q,, g,) be a Riemannian manifold. A Riemannian

submersion ¥ from Q, onto Q, is called a conformal quasi bi-slant (CQBS)
submersion if there exists three mutually orthogonal distributions ©%, D°: and
D% such that

(i) ker ¥, = D* @ D% @ DY,

(ii) ®7 is invariant. i.e., FD¥ = D%,

(iii) FDY L D% and FDY% L Db,

(iv) for any non-zero vector field ¥, € (Z)el)p, p € Q, the angle 0, between (@91)10
and FV, is constant and independent of the choice of the point p and V/; € (Del)p,
(v) for any non-zero vector field 7, € (1392)q, q € Q, the angle 6, between (2992)q

and FV, is constant and independent of the choice of the point g and V; € (Dez)q.

If we denote the dimensions of D%, D% and D% by m,, m, and m; respectively,
then we have the following observations:

(i) If m; # 0,m, = 0 and m3 = 0, then V¥ is an invariant submersion.

@) Ifm; #0,m, #0,0<6; < %and ms; = 0, then W is a proper semi-slant
submersion.

(i) If my =0,m, =0and m; # 0,0 < 6, < g, then ¥ is a slant submersion with

slant angle 6,.
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V) Ifm;=0m, #0,0<06, < % and m; # 0,6, = g, then W proper hemi-slant
submersion.

W) Ifm;=0m,#00<6; < gand ms; #0,0<6, < g, then W is proper bi-slant

submersion with slant angles 6, and 69,.

(vi)Ifm; #0,m, #0,0< 6, < % and m; # 0,0 < 0, < g, then W is proper quasi

bi-slant submersion with slant angles 6, and 6,.

Hence, it is clear that CQBS submersions are generalized version of conformal

quasi hemi-slant submersions.

Let ¥ be a CQBS submersion from an almost product Riemannian manifold

(Q4, 91, F) onto a Riemannian manifold (Q,, g,). Then, for any U € (ker ¥,), we

have (3.2)
U=uA0+BU + ¢U,
where 2, 8 and € are the projections morphism onto %, D%, and D%,
respectively. Now, for any U € (ker ¥,), we have
(3.3)

FU=¢&U+nU

where £U € I'(ker W,) and nU € T'(ker ¥,)*. From equations (3.2) and (3.3), we

have

FU =FQU)+F@BU)+ F(CD)
= EQUD) + n(UV) + E(BU) + n(BU) + £(CD) + n(CO).

Since FDY = D% and n(AV) = 0, we have

FU = EQD) + E(BU) + n(BU) + E(CT) + n(CD).
Hence, we have the decomposition as

F(ker¥,) = D% @ ¢D% @ §D% @ nD* @ nD%.
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(3.4)

From equations (3.4), we get

(ker ¥,)* = nD% @ nD% @ p,
(3-5)

where p is the orthogonal complement to D% @ n®% in (ker ¥,)* and u is

invariant with respect to F. Now, for any X € I'(ker ¥,)*, we have

FX = PX +
LX (3.6)

where PX € T'(ker¥,) and LX € I'(n).

Lemma 3.1. Let (Q,, g1, F) be an almost product Riemannian manifold and
(Q2, g,) be a Riemannian manifold. If ¥: Q, — Q, is a CQBS submersion, then we

have

E2U + PEU,nEU + LnU = 0,

U=
X =nPX + 1?X,éPX + PLX =0,

for U € T'(ker¥,) and X € I'(ker ¥,)*.

Proof. By using equations (2.1), (3.3) and (3.6), we get the desired results.
Since ¥: Q; — Q, is a CQBS submersion, Here we give some useful results that

will be used throughout the paper.

Lemma 3.2. [19] Let ¥ be a CQBS submersion from an almost product
Riemannian manifold (Q, g,, F) onto a Riemannian manifold (Q,, g,), then we
have

(i) £2U = cos? 6,0,

(il) g1 (§U,£V) = cos® 619, (U, V),

(i) g T, nV) = sin® 0, 9,(T, V),

for any vector fields U,V € T(D%).
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Lemma 3.3. [19] Let ¥ be a CQBS submersion from an almost product
Riemannian manifold (Q;, g,, F) onto a Riemannian manifold (Q,, g,), then we
have

(1) £2Z = cos? 0,7,

(i) g1 (€2, €W) = cos? 6,9,(Z, W),

(iii) g1 (nZ, nW) = sin? 6,9, (Z, W),

for any vector fields Z, W € I'(D%).

The proof of above Lemmas is similar to the proof of the Theorem 3.5 of [19].

Thus, we omit the proofs.

Let (Q,, g,) be a Riemannian manifold and that (Q,, g, F) is a LPR manifold. We
now observe how the tensor fields 7 and A of a CQBS submersion ¥: (Q,, g;,F) —
(Q,, g,) are affected by the LPR structure on Q.

Lemma 3.4. Let ¥ be a CQBS submersion from an almost product Riemannian

manifold (Q,, g4, F) onto a Riemannian manifold (Q,, g,), then we have

AzPY + HVzLY = EHVzY + PAzY
VVzPY + AgzLY = nH V3V + LARY.
VVREV + AgnV = PAZV + EVVZTV
AgEV + HVznV = CAzV + nVViV.
VVyPX + TyLX = ETHLX + PHVzX
TyPX + HVyLX = nTpX + LH VX,
VVGEV + TymV = BITZV + VvV
T8V + HVgnV = LT5V + nVvgV,

for any vector fields U,V € I'(ker W,) and X, Y € I'(ker ¥,)*.

(3.7)
(3.8)

(3.9)

(3.10)
(3.11)
(3.12)
(3.13)
(3.14)

Proof. By the direct calculation, using (3.6), (2.10) and (2.3), we can easily obtain

relations given by (3.7) and (3.8). Remaining relations can be obtained similarly

by using (3.3), (3.6), (2.7)-(2.10) and (2.3).
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Now, we discuss some basic results which are useful to explore the geometry of

CQBS submersion ¥: Q; — Q,. For this, define the following :

(3.15)
(VgOV = VVgEV — Evvgl (3.16)
(VgmV = HVgnV —qVVgV (3.17)
(VgP)Y = VVgPY — PHV;Y (3.18)
(VL)Y = HVzLY — LHVsY

for any vector fields U,V € T'(ker W,) and X, Y € I'(ker ¥,)*.

Lemma 3.5. Let (Q,, g1, F) be LPR manifold and (Q,, g,) be a Riemannian
manifold. If ¥: Q; — Q, is a CQBS submersion, then we have
(Vg§)V = PTyV — TymV
(VomV = LTGV — T5¢V
(VgP)Y = EAzY — AL
(VzL)Y = nAzY — AzP

for all vector fields U,V € I'(ker ¥,) and X, Y € I'(ker ¥, 1).

Proof. By using equations (2.3), (2.7)- (2.10) and equations (3.15)-(3.18), we get
the proof of the lemma.

If the tenors & and 7 are parallel with respect to the connection V of Q, then, we

have
PT5V = TymV, LT3V = T5EV

for any vector fields U,V € I'(TQ,).

4 Integrability and totally geodesicness of

distributions
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Firslty, we are giving definition of Riemannian manifold.

A Riemannian metric on a smooth manifold M is a symmetric positive definite
smooth 2-covariant tensor field g. A smooth manifold M equipped with a

Riemannian metric g is called a Riemannian manifold and denoted by (M, g).

Since, ¥: Q; — Q, is a CQBS submersion, where (Q,, g4, F) representing a LPR
manifold and (Q,, g,) denoting a Riemannian manifold. The existence of three
mutually orthogonal distributions, including an invariant distribution D, a pair of
slant distributions D%t and D%, is guaranteed by the definition of CQBS-
submersion. We begin the subject of distributions integrability by determining

the integrability of the slant distributions as follows:

Theorem 4.1. Let ¥ be a CQBS submersion from LPR manifold (Q, g;, F) onto
a Riemannian manifold (Q,, g,). Then slant distribution D% is integrable if and
only if
(4.1)
A—lz{gz(v‘gltp*nvl +V;, WU, W.n6Z)}

1 17 (7 Yy =5 ~
= ﬁ{gz (VW) (Ty 1) + (V) (7, nTy), ¥.nG€Z )}
— 91 (Vo néVy — Vo180, Z) — g1(Tg,nVy — Ty, FUZ + §CZ),

for any U, 7, € T(D%) and Z € T(D* @ D%).
Proof. For U}, V; € T(D%) and Z € I'(D* @ D% ) with using equations (2.2), (2.3),
(2.13) and (3.3), we get

9:([0,71],2) = 9:1(V5,§V1,FZ) + g:1(Vg,nV1, FZ)
~91(V9, 801, FZ) — g:(Vy,nUy, FZ).

By using equations (2.3), (2.13) and (3.3), we have
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91.([07).2) = 9:(V5,82V0,2) + 9:(Vo,0é V1, Z) — g1 (V3,20,, 2)
~91(V3, 004, Z) + g, (Vg,n¥, FUZ + §6Z + nGZ)
—91(Vy,nU,, FUZ + §6Z + nCZ).

Taking account the fact of Lemma 3.2 with using equation (2.8), we get

91([171, 171],2) = cos? Blgl([Ul, 171],Z~) + gl(Vglanl — VVJI'SHLZ)
+g:(Tg, Vs — Ty, Uy, FUZ + EGZ)
+91(HVg,nVy — HVy 00, nC2).

By using formula (2.14) with Lemma 2.1, we finally get
sin® 0 g, ([[—71: 171], Z)
1 r ~ ~
= 25 {92(V5, WanVy — Vg, Wan U, WunGZ)}

1 ~ o~ _ .~ -
+ 25192 (LI (00n¥), an6Z) + g, (W) (70 Th), .n6Z )}
+ g1 (Tg, Wy — Ty Uy, FUZ + §6Z) + g, (Vg,néVy — V06U, Z).

In a similar way, we can examine the condition of integrability for slant

distribution as follows:

Theorem 4.2. Let ¥: (Q1, 94, F) = (05, g,) be a CQBS submersion, where
(Q1, 91, F) a LPR manifold and (Q,, g,) a Riemannian manifold. Then slant

distribution D? is integrable if and only if

1 - o~ -~ o~ .
- ﬁ{gz ((VW*)(UZJWVZ) - (V‘P*)(VZ:UUZ),W*USBZ)}
= 91(71172775‘72 - Tvznfﬁz.f) + 91(TL7277VZ - TVZTlﬁz'FQIZ +¢BZ)

1 7 ~ ~
+ Z {gz (V%JZ‘P*UVZ — V%W*nUZ, 111*7]232)}_

for any U,,V, € I'(D%) and Z € T(DT @ D).
Proof. By using equations (2.2), (2.3), (2.13) and (3.3), we have

91([1721172]’2) = _91(VV252U2,Z~) - gl(VVZTIfUZ'Z) + 91(V0252V2;Z~)
+9:1(Vg,néV2, Z) + g1 (Vg0 — Vo,n0,, FZ),
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for any U,,V, € I'(D?%) and Z € I'(D* @ D). From equations (2.8) and Lemma
3.3, we get
Sin2 Hzgl([Uz, ‘72],2) = gl(ngnVZ - g-f'/'znijz, FQIZ + ESBZ)
+9:(HVg,nV, — HV5,nU,,nBZ)
+91(T5,né Vo — T,m Uz, Z).

Since ¥ is CQBS submersion, using conformality condition with equation (2.14),

we finally get

o 1 o o )
sin? 9291([[]2, Vz],Z) = ﬁ{gz ((VLP*)(UZ,TIVZ) — (V‘P*)(VZ,nUz),lp*r,Q?,Z)}
1 (7 ~ ~
+25{92(V5, WV, — Vi WU, W.n82))

+91(Tg, 0V, — Ty Uy, FUZ + EBZ)
+9,(T5,mEV, — Ty néU,, Z)

This completes the proof of the theorem.

Since, the invariant distribution is mutually orthogonal to the slant distributions
in accordance with the concept of CQBS-submersion, this led us to investigate the

necessary and sufficient condition for the invariant distribution to be integrable.

Theorem 4.3. Let ¥: (Q1, 91, F) = (05, g,) be a CQBS submersion, where
(Q1, 91, F) a LPR manifold and (Q,, g,) a Riemannian manifold. Then the

invariant distribution D7 is integrable if and only if
(4.2)
91(T5&EAV — TEUT, nBZ + nCW)
— g, (VVGEAV — VVEUAT,EBZ + £6Z) = 0,

for any U,V € I'(DY) and Z € I'(D% @ D%).
Proof. For all U,V € I'(D?) and Z € I'(D% @ DY%) with using equations (2.2),
(2.13), (2.7) and decomposition (3.2), we have

9110, V1, Z) = g,(VgéUV,FBZ + FCZ) — g,(VypéUU, FBZ + FCZ).
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By using equation (3.3), we finally have

+9,(VVGEAV — VAREUT, EBZ + £C2).

This completes the proof of theorem.

After discussing the prerequisites for distribution's integrability, it is time to
examine the necessary and sufficient conditions that must also exists in order for
distributions to be totally geodesic. We begin by looking at the condition of totally

geodesicness for invariant distribution.

Theorem 4.4. Let ¥: (04, g1, F) = (Q,, g») be a CQBS submersion, where
(Q1, 91, F) a LPR manifold and (Q,, g,) a Riemannian manifold. Then invariant

distribution D* defines totally geodesic foliation on Q; if and only if
(D) 272, (VW) (T, FV), ¥.1Z) = g, (VVgFV,£2)
(i) A-2g, (VYD (T, F7),¥.LX) = g,(VVgFV, PR),

forany U,V € I(®Y) and Z € (D% @ D%).

Proof. For any U,V € T'(D¥) and Z € I'(D% @ D% ) with using equations (2.2),
(2.3),(2.13) and (3.3), we may write

91(VeV,Z) = g, (VVgFV,E2) + g, (T5FV,nZ).
By using the conformality of W with equation (2.14), we get
9:(VoV,2) = g:(VVgFV,§Z) — 172g, (VW) (T, FV), W.nZ).

On the other hand, using equations (2.2), (2.3) and (2.13) with conformality of ¥,

we finally have
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9:(VoV, %) = g1 (VVsF 7, PX) = 172, (VW) (0, FV), W.LX).
This completes the proof of the theorem.

In similar way, we can discuss the geometry of leaves of slant distribution D% as

follows:

Theorem 4.5. Let ¥ be a CQBS submersion from LPR(Q,, g;, F) onto a
Riemannian manifold (Q,, g,). Then slant distribution D% defines totally

geodesic foliation on Q, if and only if

1 " (4.3)
=9, (V¥ ZnBW), ¥.nGT ) — = g2 (V5 ¥.nBW, .06 T)
= g:(TnEBW, 0) — g, (TnBW, FUDT)
— 91(TznBW, §6U) — cos? 6,9, (VV;8BW,U)
and
1 - ~ - 1 - ~ ~
=9, (VW) 1EBW), 9.X) + g, (V) ngBW), W.LX)
(4.9)

1 - ~ - 1 ~ ~ .
= 2202 (V)2 nEBW), ¥.8) - = g, (V) 2, i), %LX))

+ cos? 0,9, (VzBW,X) + g1(TgnéBW, PX),

forany Z,W € I'(D%),U e I(D* @ D% ) and X € I'(ker ¥.)*.
Proof. By using equations (2.2), (2.3), (2.13) and (3.3), we get

91(VzW,0) = g, (VznBW,F(UT + €0)) + g, (FVzE8W,0),

for Z,W € I'(D%) and U € I'(DT @ DY%). Again using equations (2.2), (2.3),

(2.13), (3.3), (2.8) with Lemma 3.2, we may write

gl(VZVT/, U) = cos? Blgl(VZQSW, U) + gl(Tznf%W, U) + gl(TZr]QSW, FQIU)
+9.(TynBW, §60) + g, (HVnBW,nC0).

Since, ¥ is conformal, using Lemma 2.1 with equation (2.14), we have
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91(VzW,0) = cos?0,9,(VzBW,0) + g,(TznéBW, U) + g1(TenBW, FUD)
~ ~ 1 ~ ~
+9,(TmBW, £6T) + = 92(V3¥.BW, ¥,nC0)

1 ~ ~ ~
~=9: (V)2 nBW), w.neD).

On the other hand, for Z, W € T'(D%) and X € I'(ker ¥,)*, with using equations
(2.2), (2.3), (2.13) and (3.3), we get

91 (VzW,X) = g,(V2E8BW,FX) + g,(VznBW, FX).

From Lemma 3.2 with equations (2.8) and (3.6), the above equation takes the

form

91(VzW,X) = cos? 0,9, (VzBW,X) + g, (HVznEBW, X)
+9:1(TméBW, PX) + g1 (HVmEBW, LX).

Since V¥ is conformal and from equation (2.14), we have

. 1 N1 o
a(VaW.8) = =20, ((VLIEZngBW), V. X) + =5 9(V5 V.ngBW, ¥.X)

1 _ _ | v ~ .
—7292 ((V‘P*)(Z, néBW), ¥, LX ) +792 (V; W.néBW,¥.LX)

+cos? 0,9,(V;W,X) + g, (TznEBW, PX).

This completes the proof of theorem.

Theorem 4.6. Let ¥: (0, g1, F) = (05, g») be a CQBS submersion, where
(Q1, 91, F) a LPR manifold and (Q,, g,) a Riemannian manifold. Then slant

distribution D% defines totally geodesic foliation on @, if and only if
(4.6)

1 . 1 w s _
292 ((V‘P*)(Z, nBW), w*n(zv) —z 92(Vz $nBW, ¥, nCV)
= g, (TnEBW, V) — g1 (TenBW, FV)

— 91(TznBW, ECV) — cos? 6, g, (VV;BW, V),

and
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1 . N 1 _ _ 5
292 ((V‘P*)(Z, nEEBW),‘P*Y) + 392 ((V‘P*)(Z, nE%W),lP*LY)

1 s ooy 1 B 8
=292 ((V‘P*)(Z, nEEBW),‘P*Y) ~ 92 ((V‘P*)(Z, nfiBW),%LY))

+ cos? 0,9, (V;BW, ) + g, (TnEBW, PY),

forany Z,W € I'(D%),V e T(D* @ D% ) and ¥ € I'(ker ¥,)*.
Proof. The proof of above theorem is similar to the proof of Theorem 4.5.

Since, ¥ is CQBS-submersion, its vertical and horizontal distribution are (ker ¥
and (ker,)*, respectively. Now, we examine the necessary and sufficient
conditions under which distributions defines totally geodesic foliation on Q;.

With regards to the totally geodesicness of horizontal distribution, we have

Theorem 4.7. Let ¥ be a CQBS submersion from LPR manifold (Q,, g4, F) onto

a Riemannian manifold (Q,, g,). Then (ker ¥,)* defines totally geodesic

foliation on Q, if and only if

%{gz (ViWnBY + Vi W.nCY, ¥,nZ)}

= g1(AgnEBY + AznéCY + AgnEAY + VVzAY,7)

+cos? 0,9,(VVxBY,Z) + cos? 0,9, (VVzCY,Z) (4.8)
+9,.(mBY,n2)g,(X,gradIn ) + g, (X,n2)g,(nBY, grad In 1)
~g1(X,nBY)g,(nZ,gradIn 1) + g, (n€¥,nZ) g, (X, gradIn 1)
+91(X,nZ)g,(mCY, grad In 2) — g,(X,n€¥) g, (nZ, grad In 1),

for any X, ¥ € I'(ker ¥,)* and Z € I'(ker ¥,).
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Proof. For any X, ¥ € I'(ker ¥,)* and Z € I'(ker ¥,) with using equations
(2.2),(2.3) and (2.13) with decomposition (3.2), we get

91(VxY,Z) = g1(VxF(UY),FZ) + g, (V3 F(BY),FZ) + g,(V3F (CY), FZ).
From equations (3.3) and (2.9) with Lemma 3.2, we have

91(VxY,Z) = g,(VVxUY,Z) + cos? 0,9, (VBY,Z) + cos? 8,9, (VzCY, Z)
+9,(VenéBY,Z) + g, (VenBY, FZ) + g,(VgnéCY, 2)
+9,(VsnCY,FZ) + g,(VxnéUY, 2)

By using the equations (3.3) and (2.10), we get

91(VxY,Z) = g, (VVzAY + cos? 6, VVzBY + cos? 6,VVzCY,7)
+91 (AznEAY + AznéBY + AznéCY,2)

+9,(HVgnBY + HVgnCY,nZ)

+9,(AznBY + AznCY,E7).

From formula (2.14), we yields that

91(V2Y,Z) = g,(VVAY + cos? 0, VVzBY + cos? 6,VVzCY,Z)
+g1(c/lganIY + AgnEBY + AznéCY, Z)

1 7 ~ ~
+ 2 {9:(ViW.nBY + V5 W.nCY,¥.nZ)}

_/1_12{92 ((vl}l*)()?, nBY) + (VW) (X, nCY), ¥.nZ )}

Since ¥ is conformal submersion, then we finally get
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91(Vz¥,Z) = —g1(nBY,n2)g1(X, gradIn 2) — g, (X,n2) g, (nBY, grad In 1)
+9:(X,nBY)g:(nZ,grad In ) — g, (€Y, 1nZ) g, (X, gradIn 1)
~g1(X,n2)g,(nCY, gradin 2) + g,(X,n€Y¥)g,(nZ, grad In 1)

+9,(VVzAY + cos? 6, VVgxBY + cos? 0,VV;CY, Z)

+91 (AznEAY + AznEBY + AznéCY,7)

1 7 ~ ~
+ 25 {92(Vy W.nBY + Vi W.nGY, W.n2Z)}.
This completes the proof of theorem.

We can now talk about the geometry of leaves of horizontal distribution. The
following theorem presents the necessary and sufficient condition under which

vertical distribution defines totally geodesic foliation on Q;.

Theorem 4.8. Let ¥: (04, g1, F) — (Q,, g,) be a CQBS submersion, where
(Q1, 91, F) a LPR manifold and (Q,, g,) a Riemannian manifold. Then (ker ¥,)

defines totally geodesic foliation on Q, if and only if

1 . _ -
P {92(VEW.EBV + VEW.nECT, ¥.X)} “s)
= g1(TpUAV + cos? 0,738V + cos? 6,T56V) + g,(TynV, PX)

. o T
—ﬁ{gz (Ve (T, 1EBV) + (V0.)(T, ngCT), w.X )}

1 {7 =~ ~ ~
+ ﬁ{gz (Vay WV — (V) (U, V), ¥.LX)},
for any U,V € I'(ker ¥,) and X € I'(ker ¥,)*.

Proof. For any U,V € I'(ker ¥,) and X € I'(ker ¥,)* with using equations (2.2),
(2.3), (2.13) with decomposition (3.2), we get

91(VgV, X) = g.(VgFUV,FX) + g,(VgFBV,FX) + g, (VgFCV, FX).

By using equations (3.3) with Lemma 3.2 and Lemma 3.3, we have
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91(VgV,X) = 9,(VgUV,X) + cos? 6, g, (VygBV, X) + cos? 0,9,(V5CV, X)
+9,(VgnBV,FX) + g, (VgnéBV, X) + g, (VgnéCV, X)

From equations (2.7), (2.8) and (3.6), we may yields

91(VgV,X) =  g.(T5UV + cos? 0, T3BV + cos? 0,T5CV, X)
+9,(HVgnéBV + HVynECT, X)
+9,(HVgnBV + HVynCV, LX)
+9:(TymBV + TymCV, PX)

From decomposition (3.2), the above equation takes the form

9:(VgV,X) = g,(T5UV + cos? 6,T3BV + cos? 0,756V, X) + g, (TymV, PX)
+9,(HVgnEBV + HVynéCV,X) + g,(HVgnV,LX).

Using the conformality of ¥ with equation (2.14), we have
9:(VgV,X) = g,(T5 UV + cos? 6,T3BV + cos? 0,756V, X) + g, (TymV, PX)
1 ~ - ~ . -
— =519 (VW (UngBY) + (V0.)(T,060), .X )}
1 _ . ~
— ﬁ{gz (VEW.néBV + Vy W.néCr, w.X)}

1 (7 =~ ~ ~
+-3192 (Vg WV = (VW) (U, V), ¥.LX)}.

This completes the proof of the theorem.

We now have some necessary and sufficient conditions for a CQBS submersion
¥:Q, - Q, to be totally geodesic map. In this regard, we are presenting the

following theorem.

Theorem 4.9. Let ¥ be a CQBS submersion from LPR manifold (Q,, g, F) onto
a Riemannian manifold (Q,, g,). Then ¥: (04, 91, F) = (Q4, g,) is totally geodesic

map if and only if (4.10)
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W, {cos? 6,VyBV + cos? 6,V5CV + VgnéBV + VgnéCV}
=W AL(-HVgnBV — HVynCV — T5EUV)}

9. {n(TgmBV + TymCV + VvzEuv)},

W, {cos? 6, VgBU + cos? 0,VzCU + VgnéBU + VgnéCU}
= —‘P*{L(o‘lj(f%ﬁ + HVnBU + }[Vgnﬁﬁ)}
—W,{n(VVgEAT + AgnBU + AgnCU)}

forany U,V € T'(kerW,) and X,Y € I'(ker ¥,)*.

Proof. Now, using equations (2.14), (2.3), (2.13) and (2.1).
(V) (T, V) = —W.(FVgFTV),

for any U,V € I'(ker ¥,). From decomposition (3.2) and equation (3.3), we may

write

(VOO V)= W-FVgeUAV — FV5EBV — FVynBV
—FV5éGV — FVnGI}.

By using equations (2.7) and (2.8), the above equation takes the form

(VW)U V) = W{-FT5éAV — FVVzEAV} — W, (VgFEBY)
—WAFTymBV + FHVgnBV} — W, (V5FECT)
—W {FTyzmCV + FHVznCV}.

Since ¥ is conformal submersion, by using Lemma 3.2 and Lemma 3.3 with

equation (3.3), we finally get
VOO, V)= W {L(-HVnBV — HVgnCV — TzEUV)

+n(=VVyEAV — T5EBV — T5ECV )}
—W,{cos? 0, VyBV + cos? 0,VyzCV + VgnEBV + VynéCi}
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From this, the (i) part of theorem proved. On the other hand, for U € I'(ker ¥,)
and X € I'(ker ¥,)* with using equations (2.14), (2.3), (2.13) and (2.1), we can

write
(VW) (X, 0) = —W.(FVgFD).
By using decomposition (3.2) with equation (3.3), we have
(VPI X, U) = —W.{F (VAT + VxEBU + VenBU + V5ECT + VynCU)}.
By taking account the fact from equations (2.9) and (2.10), we get

(VPOX, 0) = —W{F(AEUT + VVzEUT + V3 FEBU
+F(HVnBU + AgnBU) + VzFECT
+F(HVgnCU + AznCU)}.

Finally, from conformality of Riemannian submersion ¥ and Lemma 3.2, Lemma

3.3, we can write

(V)X 0) = —WL(AgEUT + HVgnBU + HVgnCU)}
—W {n(VVEAT + AznBU + AgnCl)}
—W,(cos? 6, VgBU + cos? 0,VgCU + VznEBU + VgnéCD).

From which we obtain (ii) part of theorem. This completes the proof of theorem.

5 Decomposition Theorems

In this section, we recall the following result from [22] and discuss some
decomposition theorems. Let g be a Riemannian metric tensor on the product
manifold M = Q; x Q, where Q, and Q, are two Riemannian manifold, then the
from following conditions, it is easy to understand the concepts of locally product

manifold and twisted product manifold.
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(1) M =Q, x; 0, is alocally product if and only if Q; and Q, are totally

geodesic foliations,

(i)  awarped product Q; X Q, if and only if @ is a totally geodesic
foliation and Q, is a spherics foliation, i.e., it is umbilic and its mean

curvature vector field is parallel,

(ili)) M = Q, X, Q, is a twisted product if and only if Q, is a totally geodesic

foliation and Q, is a totally umbilic foliation.

The presence of three orthogonal complementary distributions D%, D1, and D%,
which are integrable and totally geodesic under the conditions that we have
stated previously, is ensured by the fact that ¥: (04, g1, F) = (05, g;) is CQBS
submersion. It makes sense to now look for the conditions in which the total
space Q; converts into locally product manifolds or locally twisted product
manifolds. In order to explore the geometry of conformal bi-slant submersion ¥,
we are providing here a few decomposition theorems that state that Q, converts

into locally product manifolds in a variety of situations.

Theorem 5.1. Let ¥: (0, 91, F) = (05, g,) be a CQBS submersion, where
(Q1, 91, F) a LPR manifold and (Q,, g,) a Riemannian manifold. Then Q; is a
locally product manifold if and only if

1 - . ~
7 (92(VgWngBY + Vi Wnéey, w. X)) (5.1)
= g1(TpUV + cos? 0,758V + cos? 6,T56V) + g,(TynV, PX)

X e T
— =592 (VLT ngBY) + (VW) (T, n67), w.%)}

1 (7 ~ ~ ~
+p{gz (VEw.nV — (V)T nV), ¥.LX)}

and
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%{gz (VY WanBY + vy WanC¥, w.nZ)}

= g1(AznEBY + AznéCY + AznéAY,Z)

+9,(VV£AY + cos? 6, VVzBY + cos? 0,VVzCY,Z)
+9:(BY,nZ) g, (X, gradIn ) + g,(X,nZ)g,(nBY, gradIn 1)
~g1(X,nBY)g1(nZ,grad In 1) + g, (€Y, nZ) g, (X, gradIn 1)
+91(X,nZ) g, (€Y, grad In 2) — g,(X,n€¥) g, (nZ, grad In 1),

forany U,V € T'(ker¥W,) and X,Y € I'(ker ¥,)*.

Proof. The proof of this theorem is directly from Theorem 4.7 and Theorem 4.8 .

Since we discussed in the previous theorem, given certain necessary and
sufficient conditions, the total space Q; transforms into a locally product
manifold. Now, it's intriguing to investigate if there are any circumstances under
which the total space Q, could turn into a locally twisted product manifold. The
conditions that turn total space Q, into a locally twisted product manifold are

found in the following result.

Theorem 5.2. Let ¥ be a CQBS submersion from LPR manifold (Q,, g;, F) onto

a Riemannian manifold (Q,, g,). Then Q, is locally twisted product of the form

Q_l(ker w,) X Q_l(ker w,)L if and Ol’lly if

/112 9 ((VLP*)(U,nV),Lp*L)?) = 9:(VoéV,FX) + g:(TymV, PX) -
+/1—12 92(VEWV, w,LX).
and
g1(X,Y)H = —PAgPY — EVzPY — EAZLY — FY, (V3 W.LY) (54)

+X(nA)PLY + LY(In1)PX — P(gradInA) g, (X, LY).

where H is a mean curvature vector and for any U,V € I'(ker ¥,) and X,, X, €
I'(ker¥,)*.

146



The Islamic University Journal of Applied Sciences (JESC) Issue II, Volume V, December 2023

Proof. For any X € I'(ker ¥,)* and U,V € I'(ker ¥,) and using equations (2.2),
(2.3), (2.13), (2.7), (2.8) (3.3) and (3.6), we have

91(VgV, X) = g1(VgéV,FX) + g1.(TymV, PX) + g1(HVgnV,LX).

From using formula (2.14) and definition of conformality, the above equation

takes place as

o o o1 o 3
91(Vo?.8) = g1(Vo$V.FR) + g1(TpnV,PX) ~ 5.9 (V) @17, w.LX)

1 o
+ 92(VE ¥V, W,LX).

It follows that the equation (5.3) satisfies if and only if Q; erw,) is totally

geodesic. On the other hand, for U € I'(ker ¥,) and X, ¥ € I'(ker ¥,)* with using
equations (2.2), (2.13), (2.3) (2.10), (3.3) and (3.6), we get

91(VxY,0) = g,(VgPY, FU) + g,(AzLY, ET) + g, (H VLY, n0).
By using the equation (2.14) with definition of conformality of ¥, we deduce that
o 1 U S
an(V:1.0)= —50 ((VLP*)(X, L), tp*nu) +25.92(VE W.LY, WD)
+91(VzPY,FU) + g,(AxLY,&0)
Considering the (i) part of Lemma 2.1, above equation turns in to

. 1 L o L
91(VxV,0) = = 92(VRW.LY, Wn0) + g, (VxPY,FU) + g,(AsLY, D)

—g1(gradin 4, X) g, (LY,n0) — g1 (gradIn 2, LY) g, (X, n0)
+g,(gradln A, n0) g, (X, LY).

By direct calculation, finally we get

g1(X,V)H = —PAgPY — EVgPY — EAZLY — FY,(ViW,LY) + X(InA)PLY
+LY(InA)PX — P(gradInA) g, (X, LY).
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From the above equation we conclude that Q; .,y . is totally umbilical if and

only if equation (5.4) satisfied. This completes the proof of the theorem.

F

6 -Pluriharmonicity of Conformal Quasi Bi-slant

Submersion

In this section, we extend the concept of F-pluriharmonicity to almost product

Riemannian manifolds and definition of Hermitian manifold.

Definition 6.1. On a manifold M, a pair (J, g) consisting of a complex structure J
on M and a Hermitian metric g in the tangent space TM, that is, a Riemannian

metric g that is invariant under J, g(JX,JY) = g(X,Y) for any vector fields X and Y
on M. A Hermitian structure specifies in any tangent space T,,M the structure of a

Hermitian vector space. A manifold with a Hermitian structure is called a

Hermitian manifold.

Let ¥ be a CQBS Riemannian submersion from LPR manifold (Q,, g;, F) onto a
Riemannian manifold (Q,, g,) with slant angles 6, and 6,. Then CQBS
Riemannian submersion is D¥ — F-pluriharmonic, D% — F-pluriharmonic, D% —
F-pluriharmonic, (DY — %) — F pluriharmonic, (D¥ — D% ) — F pluriharr ( 6.i)
ker ¥, — F-pluriharmonic, (ker ¥,)* — F-pluriharmonic and ((ker ¥,)* —

ker ¥,) — F-pluriharmonic if
(V&)U V) + (VP)(FU,FV) = 0,

for any U,V € (DY), for any U,V € I'(D%), for any U,V € T(D?%), for any U €
r(®Y),V er(d%), forany U € T(DY),V € I'(D%), for any U,V € I'(ker ¥.), for
any U,V € I'(ker ¥,)* and for any U € I'(ker ¥,)+,V € I'(ker ¥,), respectively.
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Theorem 6.1. Let ¥ be a CQBS submersion from LPR manifold (Q, g;, F) onto
arm (Q,, g,) with slant angles 6, and 6,. Suppose that ¥ is D1 — F

pluriharmonic. Then D% defines totally geodesic foliation on Q; if and only
if
W, (nTegnéV + LHVegnéV) — W, (A, g€V + HVegnV)

= cos? 0, W, (LTzgV + nVVegV) + V5 W.FV
—nU(n D)WV —nV(An DY U + g,(nU, V)W, (gradIn 1)

forany U,V € (D%).
Proof. For any U,V € I'(D?) and since, ¥ is D% — F-pluriharmonic, then by

using equation (2.7) and (2.14), we have

0= (VW) (T, V) + (VW) (FU,FV)

W, (VgV) = —W.(VpgFV) + Vi . (FV)

= —W,(AygéV + VV, 5V + TegnV + HVegnV) — W, (FVeFEV)
+(V®) (T, nV) =V, WV + Vi W.FV.

By using equations (3.3), (3.6) with Lemma 2.1 and Lemma 3.2, the above

equation finally takes the form

W (VgV) =  —cos? 0, V. (PTegV + LTpgV + EVVV + nVVesV)
+W. (ETegméV + nTegnéV + PHVegnéV + LHVegnéV)
—W, (A géV +VV,5&V + TegnV + HVegnV)
+nU(n D)WV + nV(In DHW.nU — g,(nU,nV)W,(grad In 1)
—V, g ¥V + Vg W.FV

from which we get the desired result.

Theorem 6.2. Let ¥ be a CQBS submersion from LPR manifold (Q,, g,, F) onto
arm (Q,, g,) with slant angles 6, and 6,. Suppose that ¥ is D% — F

pluriharmonic. Then D% defines totally geodesic foliation on Q, if and only if
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W, (TeznéW + LHVeznEW ) — W, (A, zEW + H VW)
= cos? 0, W, (LT ;W + WV ;W) + VW FW
—nZ(n )Y W — nW(n D)V¥,nZ + g,(nZ,nW)¥,(grad In 1)

for any Z, W € I'(D%).

Proof. The proof of the theorem is similar to the proof of Theorem 6.1.

Theorem 6.3. Let ¥ be a CQBS submersion from LPR manifold (Q;, g,, F) onto
arm (Q,, g,) with slant angles 8, and 68,. Suppose that ¥ is ((ker¥,)* — ker ¥,) —
F-pluriharmonic. Then the following assertion are equivalent.

(1) The horizontal distribution (ker¥,)* defines totally geodesic foliation on Q;.

(cos? 0; + cos? 0,)W.{LTpzEUT + nVVpz AU + LA gEUT + nVV, EAT}
= W {LTp 2 EUT + nVVpzéAU + LA, zEUT + nHV, zEAT}

~W, (nTpxnEBU + LHVpznEBU + nTpgnéCU + LHVpznECU}

+LX(In D)W, néBU + néEBU(An DHW,LX — g, (LX, nEBU)W,(grad In 1)
+LX(In H)W,néCT + néCUAn DHW,LX — g, (LX,nECU)W, (gradIn 1)
—W,{nAznEBU + AL znECT — HVpznU} — V3 W.nEBU

+W,(Vg0) + Vi WU — V,5¥.0éCT,

(ii)
+LX(In D)W, néBU + néEBU(An V)W, LX — g, (LX, nEBU)WY,(gradIn 1)
+LX(In DHW,néCT + néCUAn DHW,LX — g, (LX, nECU)W, (gradIn 1)
—W,{(nAz0EBU + 1AL znECT — HVpgnU} — V5 W.nEBU

+W,(Vg0) + VigWanU — V,39.nECT

for any X € I'(ker ¥,)* and U € I'(kerV¥,)

Proof. For any X € I'(ker¥®,)* and U € I'(ker¥,), since ¥ is ((ker¥,)* — ker¥,) —
F-pluriharmonic, then by using (2.14), (3.3) and (3.6), we get
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W, (Vygn0) = =W, (VpgéU + VpgnU + V, 3E0) + W, (V30) + Vg WanU.
Taking account the fact from (2.1) and (2.8), we have

Y. (Vgnl) =  —W(TpgnU + HVpgn0) + W.(V50) + Vi WU
—W,(FVp3FEU) — W.(FV, g FET)

Now on using decomposition (3.2), Lemma 3.2, Lemma 3.3 with equations (3.3),

we may yields

W, (Vyzn0) = WAFVpznéBU + FVpgnéCU + FV, 3néBU + FV, znéCU}
W {FVp3éUT — cos? 0,FVp3EU — cos? 0,FVpzEU}
+W,{FV, 3 EAT — cos? 6,FV, 30U — cos? 0,FV, U}
—W, (K VpgnU) + W.(Vg0) + Vi WU

From equations (2.7)-(2.10) and after simple calculation, we may write

W,(Vyzn0) =  —(cos? 0; + cos? 0,)W.{LTp5EUT + nVVpgéUT + LA, 3EAT
+NVV, 2 EUT} — W (nA znEBU + neA, znECU — HVpzn U}
+W{LTp 58U + nVVpgEUT + LA, 3EUT + nHV, 5EAT}
~W, (nTpznEBU + LHVpgnEBU + nTpznéCU + LHVpznéCU}
—W, (LK gnEBU + LIV, 3nEBU) + W.(VgU) + Vg WU

Since ¥ is conformal Riemannian submersion, the by using equations (2.14) and

from Lemma 2.1, we finally have

W, (V,2n0) = —(cos? 6, + cos? 0,)W.{LTp AT + nVVp3EUU + LA, 3 EAT
+NVV, 3 8UT} — W.{neA zn8BU + neA znECU — HVpgnU}

+W LT3 EAT + nVVpgEUU + LA, 3EUT + nHV, EAT}

~W.(nTpxnéBU + LHVpznéBU + nTpgnéCU + LHVpgnéCU}

+LX(In D)W, néBU + néEBU(An DY, LX — g, (LX, nEBU)W,(gradIn A)
+LX(n DW,néCT + néCT(n D)W, LX — g, (LX, nECU)W,(grad In 1)

+W, (VD) + Vi Wl — V/;W.néBU — V/;W.néCT,

which completes the proof of theorem.
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