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Abstract

The aim of this paper is to deliver the fundamentals to detect Bézier patches of scanned objects
based on their normal congruence. In five-dimensional real projective space (P°), we introduce
a new approach for tensor product (TP) Bézier patch representation. For this reason, we use
Pliicker coordinates which are a way to assign six homogeneous coordinates to each line in
three-dimensional projective space (P®). Derivatives, normal vectors of Bézier patches and
some of geometric properties of these patches are discussed. Further, the special case,
biquadratic Bézier patch is introduced. The Plicker coordinates of the normal congruence of
the patch are functions of order 14 in general, because of that high degree, it seems not to be
of practical use to calculate the focal points of the normal vectors of the patch in general. We
try these calculations for the biquadratic patches (m=n=2). Finally, we present a computational

example to compute the two focal points of a normal of this patch.
Keywords

TP-surfaces, Curvature lines, Normal congruence, Focal surfaces of congruence, Pliicker
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1. Introduction

Space curves and their frames is important in differential geometry, Mechanics and Physics.
They have many applications in Computer Aided Design (CAD), Computer Aided Geometric
Design (CAGD) (for more details, see [1-6]).

In reverse engineering the detection of special classes of CAGD generated surfaces is often
based on the line congruence of normals and the GAUSS-image of such a surface. For surfaces
with a “kinematic generation”, as example helical surfaces or surfaces of revolution, the
congruence of normals belong to a linear complex and this fact allows the detection via a line
geometric treatment [7, 10]. Patch detection in case of general spline surfaces is not yet solved
successfully. While the patch generation is at most invariant with respect to affine
transformation, the normal congruence of the patch is a Euclidean concept. Therefore, we can
expect that connections between the patch and its congruence turn to be rather complicated
already for (algebraic) Bézier surfaces.

The analysis of the patch’s normal congruence is only the first step of the far more difficult
investigation of a reflection or refraction congruence with respect to a given patch. This
problem belongs to geometric optics which would have explicit industrial applications but is
not the topic of this paper. We restrict ourselves to an analysis of the normal congruence of a
TP- Bézier patch [4, 7, 10].

A Bézier curve was named after Pierre Bézier, an engineer and mathematician who developed
this method of computer drawing in late 1960s while working for the car manufacturer Regie
Renault [3].

Derivatives and normal vectors of these curves are important issues in geometric modeling and
computer graphics [10]. The first derivative of a degree n polynomial Bézier curve can be
expressed as a degree n-1 polynomial Bézier curve. For a tensor-product Bézier patch of degree
m in r-parameter and n in s-parameter, the partial derivatives with respect to each parameter r
or s are also tensor-product Bézier patches of degree m-1inrandninsorminrandn-lins.
The normal direction can be obtained as the cross product of the partial derivative respect to r

and the partial derivative respect to s, its degree is(2m—-1)x (2n-1).

2. Differential geometry of TP- Bézier patches

A tensor product Bézier patch @ of degree (m, n) and P,; control points can be defined as

follows:
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X ™ (u,v) = ZZ B (u)B{(v) P; ; u,ve[01]x[0], Q)

i=0 j=0
whereby B/"(u) and BJT‘(V) denote the Bernstein polynomials of degree m and n in u and v

parameters respectively. We will assume that the set of control points is chosen such that
X, x X, #0 V (u,v) €[01]x[0]. @)

n

‘
£

Figure 1. A Parametric surface patch.

We want to calculate the first fundamental form:
ds®> = Edu® + 2F dudv+Gdv?, (3)

of that patch, that means we have to calculate

E:xuxu!F:Xuxv’ G=XVXV, (4)
where
n m-1
X, = ZX"Wy)=mY BB M) AR,
(3U j=0 i=0 ’

0\ mn 5SS on m 01

X, :EX ’ (va)znzz Bi"(v)B"(u) AR ;. ®)
i=0 j=0

The partials Xu and Xv at a point X span the tangent plane to the patch at X.
Let Y be any point on this plane. Then

detly — X, X,,X,]1=0, (6)
is the implicit equation of the tangent plane. The parametric equation is
YUV)=X+AX, +uX,; Lueh (7

The normalized normal
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Xy xX,

"Rk v

together with the unnormalized vectors Xu and Xv form a local coordinate system, a frame, at
the point X e @ (see Fig. 2).

=
‘.

Figure 2. The local frame and the tangent plane.

From curve theory [7, 8], we know that its curvature xis defined by t' = xm.

We now calculate the second fundamental form of @,

kcospds® =L du® +2M dudv+ N dv?, 9)

whereby ¢ is the angle between the main normal m of the curve ¢ — ® and the surface normal

nand x its curvature at the point X under consideration, as illustrated in Fig. 3.

Here, L, M and N are defined as follows:

L =nX,,
M=nX,, (10)
N =nX,

Osculating circle

Figure 3. Osculating circle.
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The 2" derivatives are the expressions, since

0" X ™ _ C m-r rO
X (u,v) = m_n! _r),JZ;;B (u) B (v) A"

S n—

X ™ (u,v) = B"*(v) B"(u)A”* P, .,
Y (uv) = S)!g‘,:o i (v) B(u) i

w

r+s Inl m-rn-s
0 X ™ (V) = min! Z
ou'ov® (m-n)l(n-9)l=4=

B (u) B (v) A P, (11)

where

Ar,O P = Ar—lO P Ar—lOP

i+1,] ij?

AO,S P AOS lP

i, j+1

0,s-1
-A"TR ;. (12)
Now, we get

m-2 n 2,0
BI"?(u)B] (v)A*° P,

Xy = U X" (u,v) = - oy B (u)Bf (VA" P,

X = oxmrwn - L3S B Brwate, (13)

whereby

Allp, (P|1j+1 |+l]) (Ij+l P)’
NP =AN°P, —A'P,, A°P, =P

i+1, ] ,j? i+1,j

AO,Z PLJ — AO,l P —AOlP

i, j+1 i,j !

—-P

ij?

AP =P . -P.. (14

ij+1 i

So, for ¢ =0, the osculating plane of the curve is perpendicular to the patch tangent plane at the
point X. The curvature of such a curve is called the normal curvature of the surface patch at X
and given by

2" fundamentd form
1% fundamentd form

(15)

K0:

Now, we can calculate principal curvature lines through a fixed point X € ® , which belong to

directions du/dv, where x, is extremal. Setting A =dv/du , we can write Eq. (15) as
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L+2MA + NA?
E+2F1+GA? "’

Ko (4) = (16)

such that x = x,(A) is a rational quadratic function in A. The extreme values x; and x, of

x(4) occur at the roots 4, and A, of

2 -1 1
detf E F G|=0 (17)
L M N
— 12 (FN —=MG) + A(EN —LG)+(EM —LF) =0
1 2
=, :m{(m —EN)++/(EN —LG)? —4(FN — MG)(EM — LF)}. (18)

Also, we can calculate the Gaussian and mean curvatures of the patch as follows:

LN - M?
M52 TG CFr
(19)
NE - 2MF + LG
Kot Ky =

Where, the term K =k, «, is called Gaussian curvature, while H = %(K1 +k,) is called mean

curvature. Note that, both x, and x, change sign if the normal n is reversed, but K is not

affected by such a reversal.

3. Motivation and results

In case of bicubic patch (m=n=3), we receive for X, X,, X, X, X,,» Wwhere

BZZBl (U)B (V)Alo 3ZZB| (U)B (V)( |+lj i, )l

j=0i=0 j=0i=0

B (V)B (U) AOlP 3228 (V)B (U)( ij+l IJ)

i=0 j=0

Mo
M~

X, =3

v

Il
o
Il
o

i=0 j

6ii B (u) B} (v)A*° P, eii B (U)B;(v) (P,; —2P,; +P,,),

j=0i=0 j=0i=0
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63 3B ) BYU)A P, =65 Y BIWB(U)(P,, — 2P, + P)

i=0 j=0 i=0 j=0

X, =953 BZ(u)B2() A" P, =933 B2 B2 W)[(Por 1~ Pra,)— (Prpa — P.)].

i=0 j=0 i=0 j=0

That means: the Pliicker coordinates (X, x X, ;X x (X, x X,))%Rof the normal congruence of

the patch are functions of order 14 because of that high degree, it seems not to be of practical
use to calculate the focal points of the normal vectors of the patch in general. We apply these
calculations to a biquadratic patch ®:

Specializing m=n=2 we receive

2ZZB| (U)B (V)Alo ZZZB| (U)B (V)( |+1J i, )a

j=0 i=0 j=0 i=0

ZB](V)B (U)( ij+l i,')’

j=0

MN

222121: B (v)B*(u) AP =2

i=0 j=0 i

1l
o

>
II
MN

uu

2
BX(v)A* P, =2) B(v) (P,; —2P,; +P,,);i=0
j=0

—
Il
o

:Zi B (u)A™ Pi,,-=2_iBf(u)( —2P,+P,);j=0

1 1

=4S BB WA P, =43 Y B W) B WP 1 ~P )-(Pa—P )] (20)

i=0 j=0 i=0 j=0
and the normal vector is

2 1 2 1 (21)
N(uv)=4) > > > Bi(u)B(u)B/(v)Bf(v) V(P xP,),

j=0 i=0 k=0 1=0

whereby, we abbreviated AP, x A P, ; by V(P,; xP,,).

Now, we are able to calculate the first and the second fundamental forms and then, by applying
EQ. (18) we get the lines of curvature of this patch.
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Figure 4. Curvature lines of the patch and two focal points, F1 and F..

Xithe Xy 5.  Vparameter lines

Xith Xy

v y-parameter lines

Figure 5. Parameter lines on the patch.

Note that, along the principal curvature lines, the normals fulfill developable surfaces,

therefore, n intersects n1 (in focal point F1) and n2 (in focal point F2), whereby

1111 = 1/1u +ﬂin n2 = 1llu +ﬂ“2nv ! (22)

and '
{n(u,v),n, (u,v),n,u,v)}, (23)
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span a plane which is tangent to Klein model M and the intersection between M and focal

plane leads to join of lines, and we have

(n(u,v) +7n, (U,v)+ 40, U,v))eM?,
S0, we get

<n+77nu +ﬂnv A+nn, +ﬂnv > =0
=(n,n)+2p(n,n )+2p(nn,)+2p8(n,,n ) +n* (n,n)+p° (n,,n)=0, (24)

because (n,n)=0 for all u,v we get
277ﬂ<nu’nv>+772<nu’nu>+ﬂ2<nv’nv>:0

=8 )+ 2B, m,)+(n,n,)=0. (25)
n n

B

Setting — = % = A, we can get the two direction coefficients (4, ,4, ) which are known as
n du

torsal directions.
Using Egs. (4), we get E, F and G, that follows:

E =(2ii B (W)B] (V) (P, — Pi,,-)J

= 4{(1-U)-V)? (P — Poo) + 201~ U) 1= V)(Py, ~ Py;)
+V2 (1_U)(P12 - Poz) +U(1—V)2 (on - Plo)
+ ZUV(l_V)(le - Pll) + UVZ (Pzz - Plz))2 J

P 3STses0 @, 7)) | ST Ews @, 7))

= 41— u)@-v)* (P — Poy) + 2v(L-U)A-V)(Py, — Py,)
+V2(1_u)(P12 - Poz) +U(1_V)2(P20 - Plo)
+2uv(L—V)(P, — P,,) +uv?(P,, = P,))
(@-v)-u)* (P~ Py) + 20~ U)L-V)(P, — Py)
+ uz(l_V)(le —Py) +V(1_U)Z(Poz —Py)

+ ZUV(]-_ u)(PlZ - Pll) + UZV (Pzz - le))’
and
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G- [222 B! (V)B? (1) (P, ., - R,,—)J
= 4((L-V)L-U)2 (P, — Py) + 2u(L - U)(L—-V)(P, - Py)
+ uz(l—V)(P21 - on) +V(1_U)Z(P02 - P01)

+2uvl-u)(P, - Py) + u’v (P — le))2 '
Also, from Egs. (10), we get L, M and N that follows:

2
L= I‘I[ZZ sz(V)(Pz,j —2P; + PO,J'J
-0

= 2’((1 ~V)* (Pyy = 2P,y + Pyo) + 2V(L = V)(Pyy = 2P, + Py, ) +V (P, — 2P, + Pzz))v
11
M = n[4zz Bil(u)B:Jl'-(V)(Pi+l,j+l - I:)i+1,j - P',j+l + Pi,jJ

i=0 j=0
=4n ((1_ WA —-V)(Py — Py =Py = Py) + V(A —U)(Py, — Py, =Py +P,,)

+UL-V)(Py =P,y =Py + P,y) +UV(P, — P, =Py, +Py,)),
and

N = ”(222: B (u)(P, — 2P, + Pi,Oj

i=0
= 2'((1 -u)y’ (Poo — 2Py, + Pyy) + 2u(l—u)(P, — 2P, + P,) + uz(on -2P, + Pzz))-
After using Eq. (18) we can calculate the two direction coefficients 4, 4,.

Now, we calculate the two direction coefficients 4, A, at the four corner points of the patch,

Py, Py, PyandP,,, where at these points the parameters u and v are

(0,0),(0,2),(1,0) and (1.2) , respectively.

At the first, let us calculate E, F, G, L, M and N at these points as follows:
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=  Cooefficients of the vector X
-3 Cooefficients of the vector X,

==  Cooefficients of the vector X,
- ——=> Cooefficients of the vector X,

—————— Kdirection

Poo

————————— (+direction

Figure 6. The coefficients of the partial derivatives.

Setting, AP, =(R,; —PR,,), to simplify our calculations.
e At the point P,, where (u,v)=(0,0):

E= 4(AP1000 )2  F= 4(AP0100 )(Aplooo) and G = 4(AP0100 )2 '
n= 4(APlOOO X APomo) '
L =8det(AP,y, AP0, APy )
M =160et(APyygg APyyg0. APy ) OF M =16det(APyyg, APyyig AP0 ),
N =8 det(Aplooo , APo100 APOZOl) :

e At the point Py, where (u,v)=(01):

E= 4(AP1202 )2  F= 4(AP0201 )(AP1202) and G = 4(AP0201 )2-
n= 4(AP1202 X AF)0201)’
L=8 dEt(Aplgoz s APy2015 APyz1 ) ,
M =16det(AP,,q,, APy, APyyy;) OF M =16det(AP,yq,, APyy;, AP,y ),
N =8 det(Asz s APo01, AI:)0001) .

e Atthe point P,, where (u,v)=(10):

E= 4(AP2010 )2  F= 4(AP2010 )(Apzlzo) and G = 4(AP2120 )2 :
n= 4(AP2010 X AP, 15 )’
L=8 det(APmo s APy150, APyog ) ,
M = 16det(AP2010’AP21201AP1011) or M= 16d9t(AP20101AP2120’APlel)’
N =8 det(Aszo s APy 50, APZZZI) .
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e Atthe point P,, where (u,v)=(11):

E= 4(AP2212 )2 , F= 4(AP2212 XAP2221) and G = 4(AP2221 )2 .
n= 4(AP2212 x AP2221),
L=8 det(Apzzlz ) AI:)2221’ AI30212 ) ,

M =16det(AP,,;,, AP,yy;, APy, ) OF M =16det(AP,,;,, APy, APy, ),
N = 8det(AP2212 J AP2221, APZOZl)'

If we use the following symbol, we can get simple equations:

TSI AP = det(AP, ;. AP, AP, ).

mnop

Now, we are in a position to calculate the quantities A1 and A2 which are define directions in
u,v-plane at each control corner point as follows:

At the point Poo:

/11 ) /12 =
0100 0100 0100
{32[(AP0100 ) ? 100022010 AP — (APlOOO) i 1000210201AP]i [(3 2((AP1000 ) i lOOOZozmAP
0100 2 0100 0100
- (APOlOO ) ? 100022010 AP)) - 4((32) 2 ((AP0100)(AP1000) lOOOZozo]_AP - 2 (APOIOO ) ? 100021101AP)
0100 0100 2
(Z(Aplooo ) ? 100021101AP - (AP1000 ) (Apomo) 100022010 AP))]V }
0100 0100
/ 64[(AP0100)(AP1000) 100020201AP -2 (AP0100 ) i 1000211101AP]'
At the point Po>:
ﬂ'1 , /12 =
0201 0201 0201
{32[(AP0201) 2 120222212 AP - (APIZOZ ) 2 120220001 Ap]i [(32((AP1202 ) 2 ZOOOlAP
2 12020201 > 2 12020201 2 12020201
— (OPy)® 2 AP — 4(32)% (AP ) (WPrg) YT AP - 2 (APyg)* Y AP
0201 0201 2
(2 (AP, ) s 20111AP ~ (APy01) (APyyg) 120222212 AP ))]]/ }
0201 0201
/ 64[(AP0201)(AP1202) 120230 AP — 2 (APyy0y)? 120220111AP].

At the point Pao:
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ﬂﬂ. ) /12 =
2120 2120 2120
éz[(APﬂZO ) 2 o Zoom AP — (APZOlO ) i 201021011 AP]i [(32((AP2010 ) i 201021011 AP

2120 2120

2120 2
—(AP,50)? 2OH’Z‘W)AF>)) —4((32)2((AP2010)(AP2120) 0y AP = 2(AP, )7 1011AP)

2120 2120 2
(Z(APZOIO) s 21011AP = (APy10) (APy1z0 ) 2010Z:omo AP ))]]/ }

2120 2120

/64[(AP2010)(AP2120) 201022221AP - 2(A|321zo)2 201021011AP]'

At the point P2»:

ﬂ'1'ﬂ“2 =
2221 2221 2221
{32[(AP2221)2 221220212AP _(AP2212)2 221221121Ap]i[(32((AP2212)2 221221121AP

2221 2221

2221 2

- (AP2221)2 2ZlZZ:ozlep)) - 4((32)2 ((Apzzlz)(Apzzﬂ) 221222021AP -2 (AP2221)2 2 1121AP)
2221 2221 2

(Z(APZZH)Z 221221121AP =~ (AP, ) (AP e 0212 AP))]]/ }

2221 2221

/ 64[(AP2212)(AP2221) 223 AP — 2(APyyy ) zmzmlAP].

Also, from Eqg. (16) we can calculate the two principal curvatures at each corner control point

and then, we get two radii of curvature at these points.

The following figures illustrate the coefficient vectors of two direction formulas at the four

corner control points of the bi-quadratic TP Bézier patch.

7o =
\ ~
\ Po2 ) {/ P \j
PR P P2 Poa P \ 22 Y
2 N \
, -
’ N
'-' Poy AN
M 1
1
! P !
N 21 v
O O
S Pao N S
2 N -7 3
= N . - =
3 Y 3
= Po2 % P11 3 =4
- 7 . R -
3 - s S
o A =}
o, e
> >
—t —t
71(0 Poy Uﬁ\
¢ !
v .
\.
Pao

\ /
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Figure 7. Coefficient vectors of the first and second fundamental quantities.

The normal vector to the TP Bezier Patch is denoted by
1 n-1

N = mnzn:izm: B (u) B (U) B{ 7 (V)B (v) (AP, x A™P,).

=0 i=0 k=0 1=0

For the biquadratic Patch; m=n=2, the normal vector becomes

N =4 > S BHU) B () BLV)BE(Y) (AP, x A™P,,).

2
=0 1=0 k=0 =0

Taking derivatives, we get

N, =% = 422121: [%iZZIB}(U)BE () (Al,oP” ><Alek,l)}I-Q’J'Z(V)Bll(v) .

j=0 1=0 i=0 k=0
The bracketed term depends only on u, and we can apply the formula for the derivative of a

Bezier curve;

N, =8 ii BL(u)B} (v)B2(W)[(A*°P, , x A°'R, )+ (A°P, , x AY'R,, ]

2
j=0 1=0 k=0

by the same way, we have

1 2 1
N, =83 >3 B2 (u)B} (u)BL (v)[(A*P x A%, , )+ (AP, xA%?P, , )}
i=0 k=0 j=0
where
A F)Ij = Pi+1,j _Pi,j ' A Pu, = Pi,j+l_Pi,j )
, _ A0, , 2,0 _ALO 1,0
AO2F)i,j _A01Pi,j+1_A01Pi,j ) A PIJ =A Pi+l,j_A PuJ )

A IDI] = (Pi+l,j+1 - Pi+1,j)_(Pi,j+l - P|J)
Let us calculate N, and N, at the four corner points, we get
At the point Poo where (u,v) =(0,0):

N, = 8{[(P10 — P )X (Pll — Py )]+ [(on - PlO)X (P01 - )]_ 2[(P10 - I:)oo)x (P01 — Py )]}’
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N, = 8{[(P11 - Plo)>< (P01 — P )]_ [(Plo - I:)oo)x (P01 — Py )]_ [(Poz - F)01)>< (PlO — P )]}
At the point Po> where (u,v)=(01):
N, = 8{[(P22 - PlZ)X (Poz - P01)]+ [(Plz - F’oz)>< (P12 Py )]_ 2[(P12 - I:)oz)>< (Poz - Pm)]}’

N, = 8{[( Pll)x( — Py )]+ [( 11 I:)01)>< (Poz — Py )]_ [(Poz - Pm)>< (P01 — Py )]

[Pu )< (P Pl
At the point P2 where (u,v) = (10):
N, =8{(Po = Pio )% (Pus = Poo I+ (P = Poo ) (Poy = Poo )] = 2[(Bg = Poo )< (Py = Poo )1},
N, =8{[(P,y = Pro )% (P, = Poy )| = [(Pus = Pro )% (Pay = Poo )] [(Pa = Pio ) % (Poy = P )] .
At the point P2, where (u,v) = (11):
N, =8{(P, =P, )x (P, = P)l+ (R = Pop ) (P, = Poy )= 2[(R, — P )< (P, = Ryl

N = 8{[( le X( on )]"‘ [( P ) (Pzz - P21 )]_ [(Plz - I311)>< (le - on )]

)
_[(P Pll) ( on ]}

-P;, AP, =P .—P

In the above equations, using A’ P, ; = P, I P

i+1,j

We have the normal vectors N , and N, in simple forms as follows:

At the point Poo where (u,v) =(0,0):

N, =8{(A% Py x A% Py )+ (A Py x A% Py )—2(A Py x A% Py ),

N, =8{(A% Py x A%P, )— (A Py, x A% Py )— (A% P, x A P, ).
At the point Po> where (u,v)=(0,1):

N, =8{A" P, xA™P,, )+ (A P, xA% P, )—2(A" P, x A% P, )},

u

N, =8{(A% P, xA% Py )+ (AP, x A% P, )— (A% Py x A% Py ) (A P, x A% Py )}

At the point P2o where (u,v)=(10):
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N, =8{(A° Py x A%, )+ (A Py x A% Py )— 2(A Py x A% Py ),

N, =8{(A° Py xA% Py, )— (AP x A% Py )— (A" Py x A% Py )}
At the point P22 where (u,v) = (L1):

N, =8{(A%° P, xA™P, )+ (A P, xA% Py, )—2(A P, x A P, )},

N, =8{(A% P,y x A% Py )+ (AP, x A% Py, )— (A% Py x A% Py )— (A0 Py x A% Py )}

Now, at each corner point on the patch, we can calculate the two focal points;
F,=N,+4 N, and F,=N,+A4,N,.

Note that, A1 and A2 depend on the choice corner control point, so we have

At the point Poo where (u,v) =(0,0):

F, =8{[ (AP, x A% P )+ (AP, x A%'P,, ) - 2(AM0Py, x A% Py )|+ 4,
[(AO'l Py x A*Py, )_ (Al‘o Poo % A™ Py )_ (AOYl Poy X APy )] }v

F, =8{[ (AP x A”'Pg )+ (AP x A% P,y ) — 2(AMOPy, x A%Py, )|+ 4,
[(A°2P x A%Py, )= (AMP,, x A™Py, )~ (AP, x AP, )] .

At the point Po> where (u,v)=(0,1):

F, =8{[ (AP, x A%'P, )+ (AP, x A%2P,, )— 2(A*°P,, x APy, )|+ 4,
[(A%1P, x A% Py, )+ (AM0 Py, x A%Py, )= (A%1Py, x APy ) (AMPy, x A%y, )]

F, =8{[ (AP, x A%y, )+ (AP, x A%2P,, ) - 2(AY°P,, x A%*Py, )|+ 4,
[(A%2P,, x A% Py )+ (AP, x AP, ) (A%2R,, x AP, ) (AP, x APy, ]}

At the point P>o where (u,v)=(10):

F, =8{[ (AP, x A%P,, )+ (AP, x A%'P, ) — 2(AM Py, x A%P,, )|+ 4,
[(Al,o P, A0 P, ) _ (Ao,l P, A0 P )_ (Al,o P, X A0 P, )] },

F, =8{[ (AP, x A%Py )+ (A Py x A”'P, ) — 2(AOPy, x A%P,, )|+ 4,
(AP, x A%P,, )— (A%P x A% P, ) (AMP,, x A%P, ]}

At the point P2> where (u,v)=(11):
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F =8 {[(ALO P, x A™ P11)+ (ALO Po X A™ P21)_ Z(Al’o Poo X A™ Py )]+ 4
(AP, x A%P )+ (AP, x AP, )= (A%HP,, x A%*P ) (AMP, x A%P, )|}

F,=8 {[(ALO P, x A P11)+ (ALO Poe X A™ P21)_ Z(Al’o Poo X A™ Py )]+ A,
(AP, x A%HP )+ (AMP,, x AP, )= (A%, x A%P, ) (AP, x A%P, )]}

4. Computational example
We have the control points for the biquadratic TP Bezier patch, are denoted by the following

matrix:

Py, Po @-10) (211 (132
P, P,|=[(-321) (021) (10,3) |;i,Jj=012.
P, P, (-131) (-2,21)) (3-12)

o

n)
I
S0 S0 O

0 1

The first and second fundamental quantities, two principal directions, two principal curvatures

and two radii of curvature at the four corner points are:

At the point Poo :
E=104F=-12,G=8,L=88 M =144 and N =112.

So, we get

A =5541, A, =-1.158 x(4,) = 23.646, x(1,) =—0.669, p, =0.042, p, = —1.495.

At the point Po; :
E=40F=-44G=72L=-80,M =-176 and N =80.

So, we get

A, =0.691, 4, =-1.669, (4 ) =—-21.004, x(1,) =1.885, p, =—-0.0428, p, = 0.530.

At the point P2 :
E=20F=-12G=8,L=8,M =0and N =-8.

So, we get
A, =1.761, A, =0.565, x(4,) =—6.605 x(1,) =0.606, p, =—0.151, p, =1.651.

At the point P2, :
E=24F=48G =140,L=-160,M =-128and N =—-88.

So, we get
A, =-1.20, 4, =-0.280, x(4,) =0.186, x(1,) =-11.761, p, =5.391, p, =—0.085.

Also, we get the normal vectors in two directions u and v at the four corner control points as

follows:
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At the point Poo ; N, =(-40,-72,-32) and N, = (-32,-40,-80) .
At the point Pe ; N, = (10416128) and N, = (-48-8,32).
At the point P» ; N, = (8,-56176) and N, = (8,—16,—56).
At the point P>, ; N, = (32,-16,48) and N, = (-8,24,-8).

Finally, we are in a position to calculate the two focal points F1 and F2 at each corner control
point as follows:

Atthe point Poo ! F, =(-217.312, —29364, —47528), F, =(~2.944, — 25,68, 60.64) -
At the point Poz 1 F, =(70.832,10.472,150.112), F, =(184.112, 29.352, 74.592) .

At the point P2 :

F, =(22.08, -84.16, 68.44), F, =(12.52, —56.04 , 135.36) .

At the point P2, :

F,=(416,-448,576), F, =(34.24, —22.72,50.24) .

The following figure shows this patch

Figure 8. Bi-quadratic TP- Bézier patch with normals and their focal points at the four corner control points.
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Figure 9. Bi-quadraticTP Beézier patch with four corner control points.

5. Conclusion

In five-dimensional real projective space (P°), a new approach for tensor product (TP) Bézier
patch representation has been introduced. Derivatives, normal vectors of Bézier patches and
some of geometric properties of these patches have been discussed. Finally, a computational

example of the two focal points of a normal of this patch is given and plotted.
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