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Abstract: One of main reasons of road-side accidents (RSA) is the reckless by the driver. Reckless
drivers induce danger on the road and their surroundings, which could result in deadly accidents
both on road and off the road. High acceleration, frequent lane changes, lane changing in high
speed, turning at high speed, and braking late or suddenly are some of the activities by drivers that
cause these deadly accidents. In this paper, we have proposed and developed a driving style
recognition system, which would alert the driver to drive safely. It would also help in identifying
the driver at mistake during a road-side accident. In this paper, we have gathered data from an
accelerometer and a gyroscope to recognize the vehicle maneuvering style of the driver. We have
applied and compared the results of two well-known classifiers, i.e. Support Vector Machine
(SVM) and K-Nearest Neighbor (KNN) to identify the driving activity. We have also explored
different features extraction techniques to identify the best solution. After, the driving activity is
recognized, it is further classified to detect the driving style, as reckless or adequate. Later on, the
system can generate alarm to the driver through an actuator and use a weight-based algorithm to

identify the driver at fault, based on the driving style, in case of a RSA.

Keywords: maneuvering style; road-side accident, classification; feature extraction; driving

style; driving activity.
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1. Introduction

With the increasing rate of vehicles on the road, the frequency of road accidents is increasing. In
a country like the Kingdom of Saudi Arabia, the rate is relatively higher. Every year more than
five hundred thousand road accident are reported and it is estimated that there are almost 7 million
vehicles registered in the Kingdom [1]. According to a trend analytical survey, a warning has been
reported that if the safety of the road is not ensured and public is not educated, the amount of
accident would pass the value of four million till 2030 [2]. Numerous studies have been performed
which identify the various causes of these accidents, such as, distractions, sleep, negative
emotions, failure to see or observe, awareness, etc. [3]. According to [4], “The Secretary General

of the Shura Council declared that the Kingdom has spent on an average 26 billion riyals annually
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on car accidents”. According to the data from the Ministry of Interior, General Directorate of
Traffic, there were around six hundred thousand accident in the year 2012 [5]. The trend of increase
in the number of accident is given in Figure 1. Although the official data are available till 2012;

however, the researchers have predicted that the value would increase to four million till 2030 [2].
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Figure 1: Number of accident in KSA reported (according to the Ministry of Interior - General Directorate of Traffic
| Saudi Open Data) [5]
According to the World Health Organization (WHO), about 1.35 million people die every year
worldwide, due to road side accidents, while 20.5 million suffer severe trauma. Most of the victims
require costly treatments over a long period of time. Along with trauma and suffering, road
accidents cause enormous social and economic losses, absorbing 1-3% of the national gross
domestic product [29]. Many consequences of a traffic accident can be effectively prevented.
However, this requires continuing efforts to develop new methods and programs aimed at
improving road traffic safety. The WHO predicted that about 1.9 million people would die each

year before 2020 due to road traffic accidents without proper action [30].

Road side accidents (RSA) can be classified as driver-based, infrastructure based, and vehicle
based. By providing better road infrastructure, infrastructure traffic accidents can be reduced.
Vehicle-based road accidents are caused by defective or outdated vehicles on the road. The
governments apply strict rules to vehicle health monitoring and penalties to reduce the number of
accidents. Likewise, in the case of driver-based accidents, the authorities imposed heavy fines to
prevent reckless and dangerous driving. However, it is a difficult task to check for recklessness

and correctly display faulty drivers. Driver based accident are due to over-speeding, reckless
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driving, and breaking road rules. In [6], we have proposed a system which can help in identifying
the driver at fault in a RSA; however, in this paper, we provide the details of vehicle maneuvering-
style recognition system in identifying the culprit for a road accident. The proposed system uses
the data gathered from the accelerometer and a gyroscope fitted inside the vehicle and apply pattern
recognition mechanism to classify the maneuvering style of the driver. The maneuvering styles are

classified as, ‘over-cautious’, ‘normal’, ‘aggressive’, and ‘reckless’.
2. Related Work

Accelerometer is a device which can recognize the change in velocity of a body. A tri-
accelerometer gives value for change in velocity in terms of x-axis, y-axis, and z-axis. However,

a gyroscope provides the values in x-axis, y-axis, and z-axis for the angular velocity.

There has been many application of accelerometer and gyroscope sensors, such as, human activity
recognition [7], fall detection [8], remote subject monitoring in old houses and clinics [9], step

counting [10], vehicle path tracking [11], and vehicle maneuvering detection [12].

Most of the proposed systems for human activity recognition use the tri-accelerometer with either
a specialized wearable sensor [13] or sensor available inside the smart-phones [14]. The data is
gathered from the sensors and feature extraction and classification algorithms are applied on that
data to identify the activity being performed by the subject [15] [14]. Classifiers, such as, decision
tree, support vector machines, k-nearest neighbor, naive Bayes, decision table, random forest, etc.
have been applied by the researchers to devise an optimal solution for human activity recognition
[16]. Similarly, the use of accelerometer is explored in other applications, such as, fall detection

[8], remote subject monitoring in old houses [9], and step counting [10].

Some researchers have applied classification mechanism on data gathered from an accelerometer
(or in a smartphone) to identify the transportation mode of the subject [11] [17]. The modes could
be classified as, in a car, in a train, in a plane, or motor based and non-motor based [11]. Some
vehicle tracking and prediction systems have also used the data from accelerometer and other
sensors [17]. Furthermore, driver profiling mechanisms are also proposed which use similar
techniques [18] [19].

Vehicle maneuvering detection is relatively a less explored area, in which few solution have been

proposed which use the data gathered from an accelerometer. Cervantes-Villanueva et al. [12] have
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proposed a solution that detects the maneuvering relative to the kinematic state of the vehicle.
They have devised a low-computational solution that can be implemented on a smart-phones,
which can be used to gather data through their embedded accelerometer and run classification

algorithm to detect the vehicle current maneuver as parked, driving, parking, and stopped.

In [28], the authors have presented a driver behavior detection mechanism using a motion
sensor/accelerometer. It uses deep learning technology to learn the sample data collected by the
sensor deployed in a vehicle. To solve the problem of small sample size and easy overfitting, they
have proposed a joint data augmentation (JDA) scheme and designed a new multi-view
convolutional neural network model (MV-CNN). MV-CNN and JDA have better generalization
ability, reduce the training variance and deviation, and increase the stability of the model training

process.

Our work is quite different to the work done by the other researchers presented above. The target
of our research is to identify the driver who caused an accident. To identify if the current driver is
at fault, we classify the drivers’ driving style based on the vehicle maneuvering. For classifying
the maneuvering style of the driver, first we need to identify the driving activity, i.e. right-turn,
left-turn, lane-change (left and right), braking, and acceleration, and then classify these activities
as ‘over-cautious’, ‘normal’, ‘aggressive’, and ‘reckless’. As we performed the experiments, we
identify that some of these activities are not recognized with higher accuracy based on
accelerometer data. Therefore, we have used the data from the gyroscope also. After including the
data from gyroscope the accuracy in detecting the driving activities increases as shown in the
results section.

We have used two classification techniques i.e. support vector machine (SVM) [20] and K-nearest
neighbor (KNN) [21] and compared the results for optimal solution. Similarly, for features
extraction, we have used kernel discriminant analysis (KDA) [22], and linear discriminant analysis
(LDA) [25] and autoregressive model [24].

The rest of the paper is articulated as follows. Section 3 provides the details of the proposed system

and discusses the model. Section 4 provides the experimentation results. Section 5 concludes the

paper.
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3. Vehicle Maneuvering Detection Methods

The proposed vehicle maneuvering detection system is modelled in Figure 2. A node with an
accelerometer and gyroscope is mounted inside the vehicle, through which the data is gathered.
There are three main modules in the system. The first module is training module, which is used to
collect data for the training of the classifiers and calculating model parameters. The second module
is the detection module which perceives the driving activity. The third module is for categorizing
the activity as adequate or reckless. The details of the model are discussed in the following

subsection.
3.1 Data Collection

A MotionNode with a triaxial accelerometer and a gyroscope is used to collect data at 1000 Hz
sampling rate. The data from accelerometer shows the change in velocity in X, y, and z directions
after every 10 milliseconds, while the data from gyroscope shows the value of angular velocity’s
X, 'y, and z components. The data stream is continuously recorded for 1 minutes sample for training
scenario created in simulated environment with ideal infrastructure and vehicle conditions. Further

specification of data collection is given in the simulatio section 4, “Experiments and Results”.
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Figure 2. The system model of the proposed driving activity recognition
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3.2 Noise Reduction

MotionNode [25] accelerometer and gyroscope have noise density of 50 ug/\ Hz (at 2 g range)
and 0.1 degrees/second, respectively. There is some noise due to the flexibility of the fiber of
which the device in mounted inside the vehicle also. To reduce the noise, we have applied a low
pass filter to remove the higher frequencies. As we are using sampling frequency Fs=1000 Hz, we
devise out low pass filter with cut-off frequency fo=100 Hz, and used a second order Butterworth
filter, with pre-warping. We have used the Butterworth filter as it rolls off more slowly around
the cutoff frequency than the Chebyshev filter or the Elliptic filter, but without ripple [27]. We
have also applied the moving average algorithm with order three (3) to smooth the signal. A
moving average filter smooths data by replacing each data point with the average of the
neighboring data points defined within a given span. The Eq. (1) gives the moving average

equation that is used with the value of o = 0.3.
Oy = a(ﬂm) + (1 - a)ﬁn—l (1)

Where 9,, is the new value and ¥,, is the moving average. Figure 3 shows the effect of noise

reduction on the collected data after remove high frequencies and applying moving average.
3.3 Feature Extraction

Segmentation

After the noise is reduced from the data, we apply segmentation to create segments of data called
windows for applying feature extraction on each window. As our data is not tagged with events,
we have applied sliding window technique for segmentation. Although this puts a lot of load on
computation resources; however, for real-time systems, this is the best option as compared to
event-based windows and activity-defined windows. We have used a single window length of 90

samples, which we have identified as optimal after using different window sizes.
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Data visualization before and after Noise Reduction
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Figure 3. Data from gyroscope for aggressive left-turn, then a right-turn: before noise reduction and after noise

reduction applied.
Autoregressive Coefficients (AR):

As per related works [7], we have used AR modeling for the gyroscope data. The representation

of the AR model is given as Eq. (2)
Xn = ﬁlé‘Xn—l + &n (2)
Where, Xn is the current value of the gyroscope data. 6;, 85, ..., §,, are weighting coefficients for

gyroscope, m is the model order indication the number of the past values used to predict the

current value and &, is the Gaussian white noise.
Principal Component Analysis

The data from the accelerometer shows the change is velocity relative to the current position of
the body, but it also contains the component of earth gravitational acceleration. To eliminate the
gravitational effect, the acceleration of earth coordinate system can be projected in the direction
of the vehicle movement. The direction of the vehicle movement would have the largest variance
of acceleration. This component can be separated using the PCA algorithm as the first principal in
PCA would be the direction of the vehicle [23].

Assume that 9, = (93,92,...9M)7, 9, = (95,92, ...ﬁ;”)T, and 9, = (92,92, ...97)T represent
the x-axis, y-axis, and z-axis accelerations of earth coordinate system. The combination of the x,

y, and z, axis data would result in a matrix, M € R™*3
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Then the covariance matrix I"can be calculated as,
T
T = (M — E(M))(M — E(M)) 4)

Where E(M) is the expectation operation for each column of matrix M. I" can be diagonalized as

it is symmetric matrix:
r=0AQ" (5

Where Q and A are eigenvector and eigenvalue matrices of I, respectively. After ranking the
eigenvalue in descending order and reconstructing the eigenvector matrix corresponding to
eigenvalues, a new matrix Q is obtained. The transformation matrix for PCA can be represented

as;
P=Q" (6)
The final PCA transformation is:
G =PMT (7)
Where the first row of the matrix G is the first principal component, i.e. our transformed data.
LDA and KDA

The goal of LDA [26] is to find a projection which gives the maximum class separation. It tries to
find the vector in the underlying space that gives the best discrimination amongst different classes.
LDA uses Eqg. (8) and Eqg. (9) for calculating within Sw, and between Sg class comparison,

respectively [26].
Sp = Xiey Ji (M; —m ) (m; — m)" (8)
Sw = Z?:l steci(ms —m;) (mg — mi)T C))

Where, Ji is the number of vectors in i class C. k is the number of classes, which in this case is
the number of driving activities. m;is the mean of vectors in class C while, and m represents the

mean of all the vectors.
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Figure 4. Feature plot for the six activities before discriminant analysis is performed showing high-in and low

between class variances.
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Figure 5. Feature plot for the six activities after KDA showing low-in and low between class variances

To extend LDA to non-linear mappings, the data, given as | points 9; can be mapped to a new
feature space, F, via some function ¢. However this mapping is computationally heavy. Therefore,
the data can be implicitly embedded by rewriting the algorithm in terms of dot products and using
the kernel trick in which the dot product in the new feature space is replaced by a kernel function.
As proved by [7], Eq. (8) is equivalent to Eq.(10);
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9TKWK9
9TKK9

J@) =

(10)

Where 9 = [9;,9,, ...,9,]T are the coefficients, and their optimal values are given by the

eigenvectors with respect to the maximum values of:
KWK9 = LKK9 (11)

Where K is the kernel matrix (Kj; = K(xi,xj)) and W is defined as:

(12)

W, = { mik, if x; and x; belongs to kt" class
0,

otherwise

For a new pattern z, its projection onto KDA basis vector w in F is calculated as:
(w,0(2) = 9TK(:, 2) (13)
Where,
K(:,z) = [K(z,2), ... K(zp, 2)]T 14)

Figure 4 shows the feature set before applying the discriminant analysis where the features have
high-in and low between class variances, while Figure 5 shows the feature plot after the application

of KDA has reduced the variance.

The reason for using discriminant analysis is to establish a significant difference in the classes of
data which helps in improving the accuracy of the classification algorithm. LDA and KDA are two
of the most famous algorithms used for this purpose. LDA is capable of finding only linear
mapping, hence the results of feature extraction are not good as our data does not have linear
boundaries. KDA applies non-linear mapping; therefore, it provides better feature extraction but
creates extra features sets. Therefore, to attain the advantages of both and obtain best results, we
have applied LDA on our data first and then applied KDA to further enhance the feature extraction

phase. The result can be seen in Figure 5.

3.4 Classification

We have considered the driving maneuver activities as, (1) right-turn, (2) left-turn, (3) brake, (4)
accelerate, (5) right-lane-change, and (6) left-lane-change. We have experimented with two

classifiers, i.e. k-nearest neighbor, and support vector machines.
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K-Nearest Neighbor (KNN)

K-Nearest Neighbor is a non-parametric classification algorithm in machine learning abundantly
used in activity recognition [21]. During the training phase, the features extracted using the LDA
and KDA algorithms are provided to the KNN, which are vectors in three dimensional feature
space, each with a class label, such as, right-turn, left-turn, brake, accelerate, right-lane-change,
and left-lane-change. For training of one class of activity the accelerometer data and the data from
the gyroscope are separately forwarded to the classifier and also together. Hence, we have three
set of classification based on the input data, called A for accelerometer only, G for gyroscope only,
and C for both accelerometer and gyroscope. The feature vectors and class labels are stored as
model parameters during the training phase. Euclidian distance is used as the measure of distance

metric, while the value of k=1 is used in our experimentation.
Support Vector Machine (SVM)

SVM is a supervised classification mechanism used in pattern recognition to classify featured data
using hyperplanes [20]. We have used one-against-one approach to build and decompose our
multiclass classifier as multiple binary classifiers. Training data is created for each class of activity.
After noise reduction, auto-regression, the extracted feature-set from the accelerometer and
gyroscope is passed to the SVM which builds a model that assigns new examples to one activity
or the other, making it a non-probabilistic binary linear classifier. The class of data is pre-defined
during the training phase. During the testing/detection phase, as the class is not pre-defined, the
supervised learning is not possible. A Gaussian kernel approach is used to devise a non-linear

SVM in our experimentation.

3.5 Maneuvering Style Detection

After the activity is classified as either a right-turn, a left-turn, a brake, an accelerate, a right-lane-
change, or a left-lane-change, the maneuvering style detection is performed to categorize the

maneuvering style as ‘over-cautious’, ‘normal’, ‘aggressive’, and ‘reckless’.

Table 1. Threshold variance value for vehicle maneuvering-style detection

Maneuvering Style
Driving Activity

Over-cautious Normal Aggressive Reckless
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Left-turn 0.0<g<0.05 0.05<x<0.20 0.21<x<0.45 X > 0.46
Right-turn 0.0<g<0.05 0.05<x<0.20 0.21<x<0.45 X >0.46
Brake 0.0<a<0.05 0.05<a<0.20 0.21<a<05 a>05
Accelerate 0.0<a<0.05 0.05<a<0.24 0.25<a<044 a>045
Lane-change-left 0.0<g<0.05 0.05<g<0.10 0.11<g<04 g>04
Lane-change-right 0.0<g<0.05 0.05<g¢g<0.10 011<g<04 g=>04

We have used a rule-based approach in categorizing the maneuvering style of the driver which is
based on the statistical analysis of the data for the concerned activity. For example, if the driving
activity is classified as a left turn, then we define the threshold values for the variance of the data
(y-axis) as: 0 - 0.05 as over-cautious, 0.05 — 0.2 as normal, 0.2 — 0.45 aggressive, and greater than
0.45 to be reckless. The values for the other driving activities are given in Table 1. In the simulated
environment, as discussed before, certain scenarios were artificially created according to the
different driving styles for each driving activity. For example, for activity ‘left-turn’, over-cautious
(too slow) left turn was performed which gave very small value in G-force (less than 0.05).
Similarly, many ‘normal’ left-turns were performed to identify the range of G-force values for
non-aggressive left-turn. After that the same simulations are performed to identify the range of G-
force for aggressive and reckless classification. These threshold values are calculated after 15
simulations for each category of each driving activity. After visualizing the simulated data, the
threshold values were calculated by the author. For activities, right-turn, left-turn, right-lane-
change, and left-lane-change, y-axis values from the gyroscope are used, while for activities brake

and accelerate, z-axis values from accelerometer are used.
4. Experiments and Results
4.1 Data Collection

We have used a MotionNode, a miniature 3-DOF inertial measurement unit (IMU), which includes
triaxial accelerometer, gyroscope, and magnetometer for use in motion sensing applications [25].
The device is 35 x 35 x 15 mm in size, shown in Figure 6, with orientation output of 3-DOF with
full 360 degrees range in all three axes. The tri-accelerometer can measure linear acceleration in

the range of 2+g or 6+g with resolution 190 pg *+ 5% (at 2 g range). The gyroscope can measure
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angular velocity with range + 2000 degrees/second and resolution 0.07 degrees/second. The device
is mounted inside the car on the fiber dashboard in a Toyota Camry 2011 for data collection. The

data is gathered are the sampling rate of 1000 Hz.

Figure 6. MotionNode device which includes an accelerometer, a gyroscope and a magnetometer.

4.2 Experimentation Setup

For the learning/training phase eight simulated scenarios are recorded for each category of each
driving activity. Four simulated scenarios are recorded for testing phase for each category in each
activity also. Given that there are six activities and four categories, 6 x 4 x (8 + 4) = 288 simulated
scenarios are recorded. Four new simulated scenarios and four simulated scenarios from the
training phase are used to check the accuracy of the classifiers. Hence, for each driving activity,
thirty-two simulated test cases are used for learning and thirty-two cases are used for testing

accuracy, out of which sixteen are included in the training.
4.3 Results & Discussion

We have performed the experiments with different settings to evaluate the feature extraction and
classification algorithms. We have experimented without using LDA and KDA (no-DA), using
LDA, and using KDA for features extraction. Similarly, we have evaluated with KNN and SVM
separately. Furthermore, we have evaluated the mechanism on accelerometer data only, gyroscope

data only, and on data from both the sensors.

Figure 7 shows the results for different classifiers and features extraction techniques on
accelerometer data only. Figure 8 shows the results for different classifiers and features extraction

technigues on gyroscope data only. Figure 9 shows the results for different classifiers and features
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extraction techniques on both gyroscope and accelerometer data. As shown by the results, without
applying discriminant analysis, the result are very poor. This is because the variance in the features
is very high and the classes have no distinct boundaries. After the application of LDA, the accuracy
improves but it is less than the accuracy of the KDA. This is due to the fact that LDA is linear,

while KDA is a non-linear discriminant analyzer.

For the classifiers, we have observed that SVM performs better that the KNN, although the value
for k used is one (1). From the literature review it is also confirmed that for activity recognition,
SVM has better classification accuracy than the KNN.

Classification Accuracy Comparisons with
data from Accelerometer

100%
90%
80%
70%
60%

o
40%
No DA LDA KDA

EKNN mSVM

Figure 7. Driving activity classification accuracy for classifiers KNN and SVM for features extraction techniques on
accelerometer data only
After the driving activities have been classified and detected, we perform further classification to
categorize the activities as ‘over cautious’, “normal’, ‘aggressive’, and reckless. As discussed in
section 3, we have applied a rules based approach in categorizing the activities. Table 2 shows the
accuracy chart for the driving style classifications. Accuracy shows the driving style is correctly
categorized, while the false positive is when a style is detected but that is not the case. The lower
values of accuracy for the ‘over-cautious’ is due to the negligible change in the values of
accelerometer and gyroscope due to the noise reduction scheme which make the signal smooth
and removes the higher frequencies. The normal driving style of the driver becomes similar to the

over-cautious style; hence, the high false positive rate.
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Figure 8. Driving activity classification accuracy for classifiers KNN and SVM for features extraction techniques on
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Figure 9. Driving activity classification accuracy for classifiers KNN and SVM for features extraction techniques on

5. Conclusion

gyroscope and accelerometer data

In this paper, we have presented a model for detecting the maneuvering style of the driver which

can help in identifying the culprit driver in case of a road side accident. The driver with the reckless

or more aggressive driving style can be accounted for the accident. For our system, we have used

an accelerometer and a gyroscope to collect data and apply features extraction and classification

algorithm to identify the current driving activity and then based on the variance of values gathered

from the gyroscope and accelerometer, categorized the driving style to be either, normal or

reckless. We have used and evaluated features extraction algorithms, such as, linear discriminant
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analysis and kernel discriminant analysis, and classification algorithms, such as, k-nearest
neighbor and support vector machine to find the best possible solution for our model. According
to the results, the combination of KDA and SVM provides the best accuracy for driving activity
detection. In the future, we aim to explore other classification algorithms, such as, random forest,
etc. to improve the efficiency of the system. We aim to implement another classifier for driving
style categorization also.

Table 1. Threshold variance value for vehicle maneuvering-style detection

Accuracy (Ac) & False Positive (FP) in percentages

Over-cautious Normal Aggressive Reckless
Driving Activity Ac FP Ac FP Ac FP Ac FP
Left-turn 70 30 96 4 98 2 99 0.5
Right-turn 70 30 96 4 98 2 99 0.5
Brake 78 22 99 0.5 99 0.5 99 0.5
Accelerate 65 35 95 5 97 3 99 1
Lane-change-left 60 40 90 10 95 5 99 1
Lane-change-right 60 40 90 10 95 5 99 1
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