Computational Dynamics Study for Polymer Blend of Polystyrene, Polypropylene and Natural Rubber.pdf

Yusuf Adamu1, Tajudeen Kolawole Bello, Muhammed Tijani Isa, Umar Shehu

Keywords: Polymer Blend, Material Studio, Polystyrene, Polypropylene, Natural Rubber.

This work introduces a sustainable Molecular Dynamics Simulation in studying the miscibility of the polymer blends, which act as a basis for analysis before laboratory experiment. The simulation software use was Material studio version 17.1, using the Forcite and Blend Modules for the computation. Temperature effect is considered on the blend mixtures as free energy of mixing (Gm), the Flory-Huggins interaction parameter (Chi or ?), the mixing energy (Emix) and the phase behaviors were analyzed during the study. The generally accepted measure of miscibility in blend mixtures is when interaction parameter (Chi or ?) is negative or less than 1 and non-miscibility when it is positive or greater than 1 is employed in this study. The results of the simulation showed that PS/PP, PS/NR and PP/NR blends were miscible at 386 K, 267 K and 175 K respectively. The miscibility points led to the evaluation of mixing energies of 0.769 kcal/mol, 0.533 kcal/mol and 0.346 kcal/mol for PS/PP, PS/NR and PP/NR blends respectively. Also, the phase behaviors of the blend mixtures were analogous and have a single critical point. The critical points correspond to an optimal mole fraction of 0.5 for the mixtures at 289 K, 202 K and 134 K for PS/PP, PS/NR and PP/NR blends respectively. The study results implied that PS will be miscible with the PP and NR at all temperatures above 386 K. The favorable interaction observed when PS is mixed with PP and NR is due to the non-polar nature of the polymers. The results achieved are in agreement with the theory.

[1]   Abderaman, M. B., Gueye, E. H. O., Dione, A. N., Diouf, A. A., Faye, O., & Beye, A. C. (2018). A Molecular Dynamics Study on the Miscibility of Polyglycolide with Different Polymers. International Journal of Materials Science and Applications, 7(4), 126.

[2]  Ahmadi, A., & Freire, J. J. (2009). Molecular dynamics simulation of miscibility in several polymer blends. Polymer50(20), 4973-4978.

[3]  Biron, M. (2017). Recycling: The First Source of Renewable Plastic. Industrial Applications of Renewable Plastics, 67-114. http://dx.doi.org/10.1016/B978-0-323-48065-9.00003-0 

[4]  Charles, H. (2002). Handbook of Plastics, Elastomers and Composites. McGraw-Hill Professional, USA. p. 69 ISBN 0-07-138476-6

[5]  de Arenaza, I. M., Meaurio, E., & Sarasua, J. R. (2012). Analysis of the miscibility of polymer blends through molecular dynamics simulations. Edited by Ailton De Souza Gomes, 29. 

[6]  Erlebach, A., Muljajew, I., Chi, M., Bückmann, C., Weber, C., Schubert, U. S., & Sierka, M. (2020). Predicting Solubility of Small Molecules in Macromolecular Compounds for Nanomedicine Application from Atomistic Simulations. Advanced Theory and Simulations3(5), 2000001.

[7]  Feldman, D. (2005). Polyblend compatibilization. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry42(5), 587-605.

[8] Gartner III, T. E., & Jayaraman, A. (2019). Modeling and simulations of polymers: a roadmap. Macromolecules52(3), 755-786.

[9]  Jawalkar, S. S., Raju, K. V., Halligudi, S. B., Sairam, M., & Aminabhavi, T. M. (2007). Molecular modeling simulations to predict compatibility of poly (vinyl alcohol) and chitosan blends: a comparison with experiments. The Journal of Physical Chemistry B111(10), 2431-2439.

[10]          MacKNiGHT, W. J. (1989). Polymer Blends WiLLiAM J. MacKNiGHT and FRANK E. KARASZ University of Massachusetts, Amherst, MA, USA. Comprehensive Polymer Science: Specialty polymers and polymer processing7, 111.

[11]           Mazhandu, Z. S., Muzenda, E., Mamvura, T. A., & Belaid, M. (2020). Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities. Sustainability12(20), 8360.

[12]          Mekonnen, T. H., Misra, M., and Mohanty, A. K. (2015). Processing, performance, and applications of plant and animal protein-based blends and their biocomposites. In Biocomposites (pp. 201-235).

[13]          Nanda, S., & Berruti, F. (2020). Thermochemical conversion of plastic waste to fuels: a review. Environmental Chemistry Letters, 1-26.

[14]          Parameswaranpillai, J., Thomas, S., and Grohens, Y. (2014). Polymer blends: state of the art, new challenges, and opportunities. Characterization of polymer blends: miscibility, morphology and interfaces, 1-6.

[15]           Platt, D. K. (2006). Biodegradable polymers: market report. iSmithers Rapra Publishing.

[16]          Robeson, L. M. (2007). Polymer blends. A Comprehensive Review. First Edition. Munich, Germany: Hanser Publishers, ISBN-10: 3-446-22569-2, ISBN-13: 978-3-446-22569-5

[17]           Salaeh, S. (2014). Processing of natural rubber composites and blends: relation between structure and properties (Doctoral dissertation, Université Claude Bernard-Lyon I).

[18]          Schmidt, A. (2013). Handbook of Polymer Synthesis, Characterization and Processing. Edited by Enrique Saldívar-Guerra and Eduardo Vivaldo-Lima. Angewandte Chemie International Edition, 53(2), 358–358. doi:10.1002/anie.201309282 

[19]          Singh, A., Radhakrishnan, S., Vijayalakshmi, R., Talawar, M. B., Kumar, A., & Kumar, D. (2019). Screening of polymer-plasticizer systems for propellant binder applications: an experimental and simulation approach. Journal of Energetic Materials37(4), 365-377.

[20]         Utracki L.A., Mukhopadhyay P., Gupta R.K. (2014) Polymer Blends: Introduction. In: Utracki L., Wilkie C. (eds) Polymer Blends Handbook. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6064-6_3

[21]          White, J. L., & Wachowicz, M. (2008). Polymer blend miscibility. Annual Reports on NMR Spectroscopy64, 189-209.

[22]         Wright, C. J. (2018) Case Study: Practical Introduction of a Materials Selection Software in a Fundamentals of Materials Science Course.

[23]         Young, N. P. (2014). Thermodynamics and phase behavior of miscible polymer blends in the presence of supercritical carbon dioxide (Doctoral dissertation, UC Berkeley).

[24]         Zhang, G., Zhang, J., Wang, S., & Shen, D. (2003). Miscibility and phase structure of binary blends of polylactide and poly (methyl methacrylate). Journal of polymer science part B: Polymer physics41(1), 23-30.