Tetra(4-aminophenyl) porphyrin-based Covalent Organic Frameworks

Maher Fathalla

Keywords: Porphyrins; Covalent Organic Frameworks; Porous Organic Polymers; Imide; Imine

Covalent Organic Frameworks (COFs) are robust crystalline porous materials with unique properties and have promising applications in many fields such as gas adsorption, sensing and catalysis. COFs properties can be tailored by the judicious choice of their building units. Stemming from its unique properties, rigid structure and synthetic accessibility, tetra(4-aminophenyl)porphyrin (TAPP) has been employed as a building unit to construct various COF materials. This review highlights the different synthetic approaches that were exploited by researchers to assemble COF materials based on TAPP. 

[1] R. Liu, K. T. Tan,Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z. Lu, H. Yanga and D. Jiang. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 50 (2021) 120-242.

[2] D. Jiang. Covalent Organic Frameworks: An Amazing Chemistry Platform for Designing Polymers. Chem. 6 (2020) 2461-2483.

[3] K. Geng, T. He, R. Liu, S. Dalapati, K. T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, and D. Jiang. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem. Rev. 120 (2020) 8814–8933.

[4] H. Furukawakyle, C. O’keeffeand and O. M. Yaghi. The Chemistry and Applications of Metal-Organic Frameworks. Science 341 (2013) 6149.

[5] Q.-Y. Liu, J.-F. Li and J.-W. Wang. Research of covalent organic frame materials based on porphyrin units. J Incl Phenom Macrocycl Chem. 95 (2019) 1–15. 

[6] A.P. Côté, I. A. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger and O. M. Yaghi. Porous, crystalline, covalent organic frameworks. Science 310 (2005) 1166–1170.

[7] S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S.K. Dey, L. Liao, W.W. Ambrogio, Y.Y. Botros, X. Duan, S. Seki, J.F. Stoddart and O.M. Yaghi. Covalent organic frameworks with high charge carrier mobility, Chem. Mater. 23 (2011) 4094–4097.

[8] S. Kandambeth, D.B. Shinde, M.K. Panda, B. Lukose, T. Heine and R. Banerjee. Enhancement of chemical stability and crystallinity in porphyrin containing covalent organic frameworks by intramolecular hydrogen bonds. Angew. Chem. Int. Ed. 52 (2013) 13052–13056.

[9] B. Gole, V. Stepanenko, S. Rager, M. Grüne, D.D. Medina, T. Bein, F. Würthner and F. Beuerle. Microtubular self-assembly of covalent organic frameworks. Angew. Chem. Int. Ed. 57 (2018) 846–850.

[10] X. Xu, S. Wang, Y. Yue, and N. Huang. Semiconductive Porphyrin-Based Covalent Organic Frameworks for Sensitive Near-Infrared Detection. ACS Appl. Mater. Interfaces 12 (2020) 37427−37434.

[11] Y. Li , J. Zhang, K. Zuo, Z. Li, Y. Wang, H. Hu, C. Zeng, H. Xu, B. Wang and Y. Gao. Covalent Organic Frameworks for Simultaneous CO2 Capture and Selective Catalytic Transformation. Catalysts 11 (2021) 1133.

[12] X. Wu1, X. Zhang, Y. Li, B. Wang, Y. Li and L. Chen. A porphyrin-based covalent organic framework with pH-dependent fluorescence. J. Mater. Sci. 56 (2021) 2717–2724.

[13] R. Shen, W. Zhu, X. Yan, Ta. Li, Yo. Liu, Y. Li,  S. Daia and Z.-G. Gu. A porphyrin porous organic polymer with bicatalytic sites for highly efficient one-pot tandem catalysis. Chem. Commun. 55 (2019) 822-825.

[14] V. S. P. K. Neti, J. Wang, S. Deng, and L. Echegoyen. Synthesis of a Polyimide Porous Porphyrin Polymer for Selective CO2 Capture. J. Chem. (2015) Article ID 281616: http://dx.doi.org/10.1155/2015/281616.

[15] C. Zhang, S. Zhang, Y. Yan, F. Xia, A. Huang, and Y. Xian. Highly Fluorescent Polyimide Covalent Organic Nanosheets as Sensing Probes for the Detection of 2,4,6-Trinitrophenol. ACS Appl. Mater. Interfaces 19 (2017) 13415−13421.

[16] M. Fathalla. Synthesis, CO2 Adsorption and Catalytic Properties of Porphyrin-Pyromellitic Dianhydride Based Porous Polymers. Macromol. Res. 29 (2021) 321–326.

[17] A. Nagai, X. Chen, X. Feng, X. Ding, Z. Guo, and D. Jiang. A Squaraine-Linked Mesoporous Covalent Organic Framework. Angew. Chem. 125 (2013) 3858 –3862.