[1] R. Liu, K. T. Tan,Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z. Lu, H.
Yanga and D. Jiang. Covalent organic frameworks: an ideal platform for
designing ordered materials and advanced applications. Chem. Soc. Rev. 50
(2021) 120-242.
[2] D. Jiang. Covalent Organic Frameworks: An Amazing Chemistry Platform
for Designing Polymers. Chem. 6 (2020) 2461-2483.
[3] K. Geng, T. He, R. Liu, S. Dalapati, K. T. Tan, Z. Li, S. Tao, Y.
Gong, Q. Jiang, and D. Jiang. Covalent Organic Frameworks: Design, Synthesis,
and Functions. Chem. Rev. 120 (2020) 8814–8933.
[4] H. Furukawakyle, C. O’keeffeand and O. M. Yaghi. The Chemistry and
Applications of Metal-Organic Frameworks. Science 341 (2013) 6149.
[5] Q.-Y. Liu, J.-F. Li and J.-W. Wang. Research of covalent organic
frame materials based on porphyrin units. J Incl Phenom Macrocycl Chem. 95
(2019) 1–15.
[6] A.P. Côté, I. A. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger and
O. M. Yaghi. Porous, crystalline, covalent organic frameworks. Science 310
(2005) 1166–1170.
[7] S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S.K. Dey, L.
Liao, W.W. Ambrogio, Y.Y. Botros, X. Duan, S. Seki, J.F. Stoddart and O.M.
Yaghi. Covalent organic frameworks with high charge carrier mobility, Chem.
Mater. 23 (2011) 4094–4097.
[8] S. Kandambeth, D.B. Shinde, M.K. Panda, B. Lukose, T. Heine and R.
Banerjee. Enhancement of chemical stability and crystallinity in porphyrin
containing covalent organic frameworks by intramolecular hydrogen bonds. Angew.
Chem. Int. Ed. 52 (2013) 13052–13056.
[9] B. Gole, V. Stepanenko, S. Rager, M. Grüne, D.D. Medina, T. Bein, F.
Würthner and F. Beuerle. Microtubular self-assembly of covalent organic
frameworks. Angew. Chem. Int. Ed. 57 (2018) 846–850.
[10] X. Xu, S. Wang, Y. Yue, and N. Huang. Semiconductive Porphyrin-Based
Covalent Organic Frameworks for Sensitive Near-Infrared Detection. ACS Appl.
Mater. Interfaces 12 (2020) 37427−37434.
[11] Y. Li , J. Zhang, K. Zuo, Z. Li, Y. Wang, H. Hu, C. Zeng, H. Xu, B.
Wang and Y. Gao. Covalent Organic Frameworks for Simultaneous CO2 Capture and Selective Catalytic Transformation. Catalysts 11 (2021)
1133.
[12] X. Wu1, X. Zhang, Y. Li, B. Wang, Y. Li and L. Chen. A
porphyrin-based covalent organic framework with pH-dependent fluorescence. J.
Mater. Sci. 56 (2021) 2717–2724.
[13] R. Shen, W. Zhu, X. Yan, Ta. Li, Yo. Liu, Y. Li, S. Daia and
Z.-G. Gu. A porphyrin porous organic polymer with bicatalytic sites for highly
efficient one-pot tandem catalysis. Chem. Commun. 55 (2019) 822-825.
[14] V. S. P. K. Neti, J. Wang, S. Deng, and L. Echegoyen. Synthesis of a
Polyimide Porous Porphyrin Polymer for Selective CO2 Capture. J. Chem. (2015)
Article ID 281616: http://dx.doi.org/10.1155/2015/281616.
[15] C. Zhang, S. Zhang, Y. Yan, F. Xia, A. Huang, and Y. Xian. Highly
Fluorescent Polyimide Covalent Organic Nanosheets as Sensing Probes for the
Detection of 2,4,6-Trinitrophenol. ACS Appl. Mater. Interfaces 19 (2017)
13415−13421.
[16] M. Fathalla. Synthesis, CO2 Adsorption and
Catalytic Properties of Porphyrin-Pyromellitic Dianhydride Based Porous
Polymers. Macromol. Res. 29 (2021) 321–326.
[17] A. Nagai, X. Chen, X.
Feng, X. Ding, Z. Guo, and D. Jiang. A Squaraine-Linked Mesoporous Covalent
Organic Framework. Angew. Chem. 125 (2013) 3858 –3862.