[1]
      Abemi A, Oyegoke T, Dabai FN, Jibril BY.
 Technical and Economic Feasibility of Transforming Molasses into Bioethanol in
 Nigeria. In: Faculty of Engineering National Engineering Conference. Zaria:
 Ahmadu Bello University; 2018. p. 145. 
[2]
      Umaru M, Aberuagba F. Characteristics of a
 Typical Nigerian Jatropha curcas oil Seeds for Biodiesel Production. Research
 Journal of Chemical Sciences, 2012, 2(10): 1-7. 
[3]
      Ajayi OO, Onifade KR, Onadeji A, Oyegoke T.
 Techno-economic Assessment of Transforming Sorghum Bagasse into Bioethanol
 Fuel in Nigeria : 1 - Process Modeling, Simulation, and Cost Estimation.
 Journal of Engineering Studies and Research, 2020, 26(3): 154–64. 
[4]
      Oyegoke T, Dabai F. Techno-economic feasibility
 study of bioethanol production from a combined cellulose and sugar feedstock
 in Nigeria: 2-economic analysis. Nigerian Journal of Technology, 2018, 37(4):
 921–6. 
[5]
      Oyegoke T, Dabai F. Techno-economic feasibility
 study of bioethanol production from a combined cellulose and sugar feedstock
 in Nigeria: 1-modeling, simulation, and cost evaluation. Nigerian Journal of
 Technology, 2018, 37(4): 913-921. 
[6]      Ighalo
 J, Adeniyi AG, Otoikhian KS. Recent advances in environmental protection of
 oil polluted surface and groundwater in the Nigerian context. The Journal of
 Engineering and Exact Sciences, 2020, 6(3): 0416–20.
[7]      Beheshtian
 J, Kamfiroozi M, Bagheri Z, Ahmadi A. Computational study of CO and NO
 adsorption on magnesium oxide nanotubes. Physica E: Low-Dimensional Systems
 and Nanostructures, 2011, 44(3): 546–9. 
[8]      Mashhood
 AK, Arsalan MG. Environmental Pollution: Its Effects on Life and Its Remedies
 by Mashhood Ahmad Khan, Arsalan Mujahid Ghouri :: SSRN. Researcher World:
 Journal of Arts, Science & Commerce, 2012, 2(2): 276–85. 
[9]      Njoku
 KL, Rumide TJ, Akinola MO, Adesuyi AA, Jolaoso AO. Ambient Air Quality
 Monitoring in Metropolitan City of Lagos, Nigeria. Journal of Applied Sciences
 and Environmental Management, 2016, 20(1): 178. 
[10]   John
 KS, Feyisayo K. Air Pollution by Carbon Monoxide (CO) Poisonous Gas in Lagos
 Area Southwestern Nigeria. Atmospheric and Climate Sciences, 2013, 03(04):
 510–4. 
[11]    Fakinle
 BS, Odekanle EL, Olalekan AP, Ije HE, Oke DO, Sonibare JA. Air pollutant
 emissions by anthropogenic combustion processes in Lagos, Nigeria. Cogent
 Engineering, 2020, 7(1): 1-16. 
[12]    Rezaei-Sameti
 M, Yaghoobi S. Theoretical study of adsorption of CO gas on pristine and
 AsGa-doped (4, 4) armchair models of BPNTs. Computational Condensed Matter.
 2015 Jun 1;3:21–9. 
[13]    Hussein
 FH. Environmental chemistry is the importance of chemistry to the environment.
 Vol. 7, Arabian Journal of Chemistry. Elsevier; 2014. p. 1–4. 
[14]    Gawande
 SM, Belwalkar NS, Mane AA. Adsorption and its Isotherm – Theory. International
 Journal of Engineering Research, 2017, 6(6): 312. 
[15]    Frank
 J. Introduction to Computational Chemistry. Second edition. John Wiley &
 Sons Ltd.; 2007. 
[16]    dos
 Vesa H. Computational Chemistry Lecture.
 http://www.helsinki.fi/kemia/fysikaalinen/opetus/.Page 03.2016. 
[17]    Abbasi
 A, Sardroodi JJ. Theoretical investigation of the adsorption behaviors of CO
 and CO2 molecules on the nitrogen-doped TiO2 anatase nanoparticles: Insights
 from DFT computations. Journal of Theoretical and Computational Chemistry,
 2017, 16(1): 1750005. 
[18]    Oyegoke
 T, Dabai FN, Uzairu A, Jibril BE-Y, Jibril BE-Y. Mechanistic insight into
 propane dehydrogenation into propylene over chromium (III) oxide by cluster
 approach and Density Functional Theory calculations. European Journal of
 Chemistry, 2020, 11(4): 342–50. 
[19]    Wu
 R, Wiegand KR, Wang L. Impact of the degree of dehydrogenation in ethanol C-C
 bond cleavage on Ir(100). Journal of Chemical Physics, 2021,  154(5): 054705. 
[20]    Bendjeddou
 A, Abbaz T, Gouasmia A, Villemin D. Molecular Structure, HOMO-LUMO, MEP and
 Fukui Function Analysis of Some TTF-donor Substituted Molecules Using DFT
 (B3LYP) Calculations. International Research Journal of Pure and Applied
 Chemistry, 2016, 12(1): 1–9.
[21]    Oyegoke
 T, Dabai FN, Uzairu A, Jibril BY. Insight from the study of acidity and
 reactivity of Cr2O3 catalyst in propane dehydrogenation:
 a computational approach. Bayero Journal of Pure and Applied Sciences, 2019,
 11(1): 178. 
[22]    Oyegoke
 T, Dabai FadimatuN, Adamu U, Baba YJ. Quantum mechanics calculation of
 molybdenum and tungsten influence on the CrM-oxide catalyst acidity. Hittite
 Journal of Science & Engineering, 2020, 7(4): 297-311. 
[23]    Dzade
 N, Roldan A, de Leeuw N. A Density Functional Theory Study of the Adsorption
 of Benzene on Hematite (α-Fe2O3) Surfaces. Minerals, 2014, 4(1): 89–115.
[24]    Yuan
 HK, Chen H, Tian CL, Kuang AL, Wang JZ. Density functional calculations for
 structural, electronic, and magnetic properties of gadolinium-oxide clusters.
 The Journal of Chemical Physics, 2014, 140(15): 154308. 
[25]    Meng
 JH, Zhao YX, He SG. Reactivity of stoichiometric lanthanum oxide cluster
 cations in C-H bond activation. Journal of Physical Chemistry C, 2013,
 117(34): 17548–56. 
[26]    Reed
 ZD, Duncan MA. Photodissociation of yttrium and lanthanum oxide cluster
 cations. Journal of Physical Chemistry A, 2008, 112(24): 5354–62.
[27]    Efil
 K, Bekdemir Y. Theoretical and experimental investigations on molecular
 structure, IR, NMR spectra, and HOMO-LUMO analysis of
 4-methoxy-N-(3-phenylallylidene) aniline. American Journal of Physical
 Chemistry. 2014;3(2):19. 
[28]    Yang
 ML, Zhu YA, Fan C, Sui ZJ, Chen D, Zhou XG. Density functional study of the chemisorption
 of C1, C2, and C3 intermediates in propane dissociation on Pt(111). Journal of
 Molecular Catalysis A: Chemical, 2010, 321(1–2): 42–9. 
[29]    Liu
 C, Tranca I, van Santen RA, Hensen RJ, Pidko EA. “Scaling relations for
 acidity and reactivity of zeolites,” The Journal of Physical Chemistry C,
 2017, 121(42): 23520-23530. 
[30]    Cho
 PI-Y, Mattisson T, Lyngfelt A. Comparison of iron-, nickel-, copper- and
 manganese-based oxygen carriers for chemical-looping combustion. Fuel, 2004,
 83: 1215–25.
[31]    Ehrensberger
 K, Palumbo R, Larson C, Steinfeld A. Production of Carbon from Carbon Dioxide
 with Iron Oxides and High-Temperature Solar Energy. Industrial and Engineering
 Chemistry Research, 1997, 36(3): 645–8. 
[32]
    Bohn CD, Cleeton JP, Müller CR, Davidson JF, Hayhurst AN,
 Scott SA, Dennis JS. The kinetics of the reduction of iron oxide by carbon
 monoxide mixed with carbon dioxide. AIChE Journal, 2010, 56(4): 1016 - 1029.
[33]   Santos-Carballal
 D, Roldan A, Dzade NY, de Leeuw NH. Reactivity of CO2 on the surfaces of
 magnetite (Fe3O4), greigite (Fe3S4), and mackinawite (FeS), Philosophical
 Transactions of the Royal Society A: Mathematical, Physical and Engineering
 Sciences. Royal Society Publishing; 2017, 376(2110): 20170065.