Synthesis and Characterization of Nano Au/NPAA Templates

Mohamed Shaban, Sobhi M. Gomha

Keywords: Nanoporous membranes, Au nanostructures, Surface plasmon resonance, r.f. magnetron sputtering

Issue II, Volume II, Pages 147 - 155

A modified two-step anodization process was applied for preparing highly ordered nanoporous anodic alumina (NPAA) templates. The interpore distance and the diameter of the NPAA pores were, 100 nm and 80 ± 2 nm, respectively. Then, Au sputtering was carried out over the fabricated template using r.f. magnetron sputtering. The morphological characterization showed that hexagonal Au nanoarrays have been deposited on the top surface of the NPAA template. Simultaneously, the interior walls of the NPAA pores have been decorated with fine Au nanoparticles. The Au-coated samples showed brilliant and statured structural colors due to the surface plasmon resonance (SPR) enhancement of NPAA optical interference. The SPR wavelength is increased from 466 nm to 512 nm by increasing the Au deposition time from 1 to 2 min.

[1] J. W. Diggle, T. C. Downie, and C.W. Goulding. Anodic oxide films on aluminum. Chem. Rev. 69 (1969) 365-405.

[2] Y. Yamamoto, N. Baha, and S. Tajima. Coloured materials and photoluminescence centres in anodic film on aluminium. Nature 289 (1981) 572-574.

[3] Y. Du, W.L. Cai, C.M. Mo, J. Chen, L.D. Zhang and X.G. Zhu. Preparation and photoluminescence of alumina membranes with ordered pore arrays. Appl. Phys. Lett. 74 (1999) 2951

[4] G. Wang, C. –W. Wang, Y. Li, W. –M. Liu, Thin Solid Films 516 (2008) 6789 -6798.

[5] X. H. Wang, T. Akahane, H. Orikasa, T. Kyotani, and Y. Y. Fu. Brilliant and tunable color of carbon-coated thin anodic aluminum oxide films. Appl. Phys. Lett. 91(2007) 011908.

[6] C. Hsu, and H. H. Liu, Optical behaviours of two dimensional Au nanoparticle arrays within porous anodic alumina. Journal of Physics: Conference Series. 61 (2007) 440-444

[7] S. L. Pan, D. D. Zeng, H. L. Zhang, H. L. Li. Preparation of ordered array of nanoscopic gold rods by template method and its optical properties. Appl. Phys. A 70 (2000) 637-640.

[8] K. L. Kelly, E. Coronado, L. L. Zhao, and G.C. Schatz. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 107 (2003) 668-677.

[9] G. A. Wurtz, W. Dickson, D. O'Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A.V. Zayats. Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime. Optics Express 16 (2008) 7460-7470.

[10] X. Zhang, B. Sun, H. Guo, N. Tetreault, G. Giessen, R. H. Friend. Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles. Appl. Phys. Lett. 90 (2007) 133114.

[11] S. Nie, S. R. Emory. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 275(1997) 1102-1106

[12] J. –Y. Chu, T. –J. Wang, Y. –C. Chang, M. –W. Lin, J. –T. Yeh, and J. –K.Wang. Multi-wavelength heterodyne-detected scattering-type scanning near-field optical microscopy. Ultramicroscopy 108 (2008) 314-319.

[13] M. Shaban, H. Hamdy, F. Shahin, Joonmo Park, and S.-W. Ryu. Uniform and Reproducible Barrier Layer Removal of Porous Anodic Alumina Membrane. J. Nanosci. Nanotechnol. 10 (2010) 3380-3384.

[14] M. Shaban, M. Ali, K. Abdelhady, A.A. P. Khan, H. Hamdy, Hexagonal arrays of Pt nanocylinders on the top surface of PAA membranes using low vacuum sputter coating technique, Vacuum 161 (2019) 259-267.

[15] M. Shaban, Morphological and Optical Characterization of High Density Au/PAA Nanoarrays, Journal of Spectroscopy 2016 (2016) 8 page [ Article ID 5083482].

[16] C. E. Rayford, G. Schatz, and K. Shuford. Optical properties of gold nanospheres. Nanoscape 2 (2005) 27-33.

[17] M. Shaban, H. Hamdy, F. Shahin, and S.-W. Ryu. Strong surface plasmon resonance of ordered gold nanorod array fabricated in porous anodic alumina template. J. Nanosci. Nanotechnol. 10 (2010) 3034-3037.

[18] P.R. Evans, R. Kullock, W. R Hendren, R. Atkinson, R. J.Pollard, and L. M. Eng. Optical Transmission Properties and Electric Field Distribution of Interacting 2D Silver Nanorod Arrays. Adv. Funct. Mater. 18 (2008) 1075 -1079.

[19] N. Felidj, J. Aubard, G. J. Levi, R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg. Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays. Phy. Rev. B 66 (2002) 245407.

[20] T. Atay, J-H. Song, and A. V. Nurmikko Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime. Nano Letters 4 (2004) 1627-1631.

[21] M. Shaban, Ashour M. Ahmed, Ehab M. Abdel Rhman, and Hany Hamdy, “Tunability and Sensing Properties of Plasmonic/1D Photonic Crystal, Scientific Reports 7 (2017) 41983.

[22] M. Rabia., M. Shaban, A. Adel and A.A. Abdel-Khaliek, Effect of plasmonic au nanoparticles on the photoactivity of polyaniline/indium tin oxide electrodes for water splitting. Environmental Progress and Sustainable Energy 38 (2019) 1-8.