[1] A.M. Alklaibi, M.N. Khan, W.A. Khan, Thermodynamic analysis of gas turbine with air bottoming cycle, Energy. 107 (2016). https://doi.org/10.1016/j.energy.2016.04.055.
[2] M. Colera, Á. Soria, J. Ballester, A numerical scheme for the thermodynamic analysis of gas turbines, Appl. Therm. Eng. 147 (2019) 521–536.
https://doi.org/10.1016/j.applthermaleng.2018.10.103.
[3] M. Maheshwari, O. Singh, Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine
and ammonia water turbine, Energy. (2019). https://doi.org/10.1016/j.energy.2018.12.008.
[4] V. Dolz, R. Novella, A. García, J. Sánchez, HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system.
Part 1: Study and analysis of the waste heat energy, Appl. Therm. Eng. (2012). https://doi.org/10.1016/j.applthermaleng.2011.10.025.
[5] R. Saidur, M. Rezaei, W.K. Muzammil, M.H. Hassan, S. Paria, M. Hasanuzzaman, Technologies to recover exhaust heat
from internal combustion engines, Renew. Sustain. Energy Rev. (2012). https://doi.org/10.1016/j.rser.2012.05.018.
[6] M. Fallah, H. Siyahi, R.A. Ghiasi, S.M.S. Mahmoudi, M. Yari, M.A. Rosen, Comparison of different gas turbine cycles and advanced
exergy analysis of the most effective, Energy. (2016). https://doi.org/10.1016/j.energy.2016.10.009.
[7] Sanjay, Investigation of effect of variation of cycle parameters on thermodynamic performance of gas-steam combined cycle, Energy. (2011).
https://doi.org/10.1016/j.energy.2010.10.058.
[8] T. K. Ibrahim, M.M. Rahman, Effect of Compression Ratio on Performance of Combined Cycle Gas Turbine, Int. J. Energy Eng. (2012).
https://doi.org/10.5923/j.ijee.20120201.02.
[9] M.N. Khan, I. Tlili, Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation,
J. Clean. Prod. 192 (2018). https://doi.org/10.1016/j.jclepro.2018.04.272.
[10] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, F.Y. Hagos, Thermal performance of gas turbine power plant
based on exergy analysis, Appl. Therm. Eng. 115 (2017) 977–985. https://doi.org/10.1016/j.applthermaleng.2017.01.032.
[11] M. Ghazikhani, I. Khazaee, E. Abdekhodaie, Exergy analysis of gas turbine with air bottoming cycle, (2014) 1–9.
[12] M. Ghazikhani, M. Passandideh-Fard, M. Mousavi, Two new high-performance cycles for gas turbine with air bottoming, Energy.
36 (2011) 294–304. https://doi.org/10.1016/j.energy.2010.10.040.
[13] O.K. Singh, Performance enhancement of combined cycle power plant using inlet air cooling by exhaust heat operated ammonia-water
absorption refrigeration system, Appl. Energy. (2016). https://doi.org/10.1016/j.apenergy.2016.08.042.
[14] M.N. Khan, I. Tlili, W.A. Khan, Thermodynamic Optimization of New Combined Gas/Steam Power Cycles with HRSG and Heat Exchanger,
Arab. J. Sci. Eng. 42 (2017). https://doi.org/10.1007/s13369-017-2549-4.
[15] H. Yağli, Y. Koç, A. Koç, A. Görgülü, A. Tandiroğlu, Parametric optimization and exergetic analysis comparison of subcritical
and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste
heat, Energy. (2016). https://doi.org/10.1016/j.energy.2016.05.119.
[16] W. Zhang, L. Chen, F. Sun, Power and efficiency optimization for combined Brayton and inverse Brayton cycles, Appl. Therm. Eng. (2009).
https://doi.org/10.1016/j.applthermaleng.2009.02.011.
[17] M.N. Khan, Energy and Exergy Analyses of Regenerative Gas Turbine Air-Bottoming Combined Cycle: Optimum Performance,
Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04600-9.
[18] R.S.Mishra, M. Kumar, Thermodynamic models for combined cycle power plants used in organic Rankine and Brayton cycles,
Int. J. of research in Engineering and Innovation.
[19] J. Galindo, J.R. Serrano, V. Dolz, P. Kleut, Brayton cycle for internal combustion engine exhaust gas waste heat recovery,
Adv. Mech. Eng. (2015). https://doi.org/10.1177/1687814015590314.
[20] S. Zhu, K. Deng, S. Qu, Energy and exergy analyses of a bottoming rankine cycle for engine exhaust heat recovery, Energy. (2013).
https://doi.org/10.1016/j.energy.2013.06.031.
[21] Y. Cao, Y. Gao, Y. Zheng, Y. Dai, Optimum design and thermodynamic analysis of a gas turbine and ORC combined cycle with
recuperators, Energy Convers. Manag. (2016). https://doi.org/10.1016/j.enconman.2016.02.073.
[22] W. Sun, X. Yue, Y. Wang, Exergy efficiency analysis of ORC (Organic Rankine Cycle) and ORC-based combined cycles driven
by low-temperature waste heat, Energy Convers. Manag. (2017). https://doi.org/10.1016/j.enconman.2016.12.042.
[23] A. Sadreddini, M. Fani, M. Ashjari Aghdam, A. Mohammadi, Exergy analysis and optimization of a CCHP system composed
of compressed air energy storage system and ORC cycle, Energy Convers. Manag. (2018). https://doi.org/10.1016/j.enconman.2017.11.055.
[24] T. k. Ibrahim, M. Kamil, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, R. Mamat, The optimum performance
of the combined cycle power plant: A comprehensive review, Renew. Sustain. Energy Rev. (2017). https://doi.org/10.1016/j.rser.2017.05.060.
[25] H. Rostamzadeh, M. Ebadollahi, H. Ghaebi, M. Amidpour, R. Kheiri, Energy and exergy analysis of novel combined
cooling and power (CCP) cycles, Appl. Therm. Eng. (2017). https://doi.org/10.1016/j.applthermaleng.2017.06.011.
[26] A.A.A. Abuelnuor, K.M. Saqr, S.A.A. Mohieldein, K.A. Dafallah, M.M. Abdullah, Y.A.M. Nogoud, Exergy analysis
of Garri “2” 180 MW combined cycle power plant, Renew. Sustain. Energy Rev. (2017). https://doi.org/10.1016/j.rser.2017.05.077.
[27] M.N. Khan, Energy and Exergy Analyses of Regenerative Gas Turbine Air-Bottoming Combined Cycle: Optimum Performance,
Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04600-9.
[28] K. Rahbar, S. Mahmoud, R.K. Al-Dadah, N. Moazami, S.A. Mirhadizadeh, Review of organic Rankine cycle for small-scale applications
, Energy Convers. Manag. (2017). https://doi.org/10.1016/j.enconman.2016.12.023.