[1] G. K. Batchelor. An introduction to fluid dynamics, Cambridge, University Press, 2000.
[2] H. Tennekes, J.L. Lumley, L.J. Lumley. A first course in turbulence. Cambridge, MIT Press, 1996.
[3] F. C. K. Ting, J. T. Kirby. Dynamics of surf-zone turbulence in a spilling breaker, Coastal Engineering, vol. 27(3–4), pp. 131–160, 1996.
[4] E. Kunze, J. F. Dower, I. Beveridge, R. Dewey, K. P. Bartlett. Observations of biologically generated turbulence
in a coastal inlet. Science, vol. 313 (5794), pp. 1768-1770, 2006.
[5] I. Eames, J. B. Flor. New developments in understanding interfacial processes in turbulent flows.
Royal Society Publishing, 2018. http://rsta.royal societypublishing.org, accessed on 21 January 2018.
[6] S. H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Florida, CRC Press, 2018.
[7] H. G. Schuster, W. Just. Deterministic chaos: an introduction. Hoboken, John Wiley & Sons, 2006.
[8] S. T. Sie. Past, present, and future role of microporous catalysts in the petroleum industry. Studies in Surface Science and Catalysis,
vol. 85, pp. 587-631, 1994.
[9] C. Bartholomew. Catalyst deactivation/ regeneration. Encyclopedia of Catalysis, 2002.
[10] C. H. Bartholomew, R. J. Farrauto. Fundamentals of industrial catalytic processes. John Wiley & Sons, 2011.
[11] Chemguide, Guide, https://www.Chemguide.co.uk/phys ical/basicrates/catalyst.html, accessed on 31 May 2018.
[12] T. Kuwabara, P. Kurzweil. Fuel Cells–Phosphoric Acid Fuel Cells | Anodes, Encyclopedia of Electrochemical Power Sources, p. 548-556, 2009.
[13] T. Oyegoke, F. N. Dabai, U. Adamu, B. E. Y. Jibril. Density functional theory calculation of propane cracking mechanism over
chromium (III) oxide by cluster approach. Journal of the Serbian Chemical Society, vol. 85(5), pp. 1-14, 2020.
[14] H. Knözinger, K. Kochloefl. Heterogeneous Catalysis and Solid Catalysts, Ullmann's Encyclopedia of Industrial Chemistry,
Wiley-VCH, Weinheim, 2002. DOI:10.1002/14356007.a05_313
[15] G. Vicente, M. Martınez, J. Aracil. Integrated biodiesel production: a comparison of different homogeneous
catalysts systems. Bioresource Technology, vol. 92(3), pp. 297- 305, 2004.
[16] T. C. Johnson, D. J. Morris, M. Wills. Hydrogen generation from formic acid and alcohols using homogeneous catalysts.
Chemical Society Reviews, vol. 39(1), pp. 81-88, 2010.
[17] Z. Helwani, M. R. Othman, N. Aziz, J. Kim, W. J. N. Fernando (2009). Solid heterogeneous catalysts for transesterification
of triglycerides with methanol: a review. Applied Catalysis A: General, vol. 363(1-2), pp. 1-10.
[18] T. Oyegoke, F. N. Dabai, U. Adamu, B. E. Y. Jibril. Insight from the study of acidity and reactivity of Cr2O3 catalyst in propane
dehydrogenation: a computational approach. Bayero Journal of Pure and Applied Sciences, vol. 11(1), pp. 178-184, 2018.
[19] Y. Zhao, K. R. Yang, Z. Wang, X. Yan, S. Cao, Y. Ye, K. L. Materna. Stable iridium
dinuclear heterogeneous catalysts supported on the metal-oxide substrate for solar water oxidation.
Proceedings of the National Academy of Sciences, 201722137, 2018.
[20] S. Morales-Delarosa, J. M. Campos-Martin, J. L. Fierro. Chemical hydrolysis of cellulose into fermentable sugars
through ionic liquids and antisolvent pre-treatments using heterogeneous catalysts. Catalysis Today, vol. 302, pp. 87-93, 2018.
[21] J. Gao, Y. Wang, Y. Du, L. Zhou, Y. He, L. Ma, Y. Jiang. Construction of biocatalytic colloidosome using lipase-containing
dendritic mesoporous silica nanospheres for enhanced enzyme catalysis. Chemical Engineering Journal, vol. 317, pp. 175-186, 2017.
[22] D. C. Cubides-Roman, V. H. Pérez, H. F. de Castro, C. E. Orrego, O. H. Giraldo, E. G. Silveira, G. F. David.
Ethyl esters (biodiesel) production by Pseudomonas fluorescens lipase immobilized on chitosan with magnetic properties in
a bioreactor assisted by an electromagnetic field. Fuel, vol. 196, pp. 481-487, 2017.
[23] R. Das, M. Talat, O. N. Srivastava, A. M. Kayastha. Covalent immobilization of peanut β-amylase for producing industrial
nano-biocatalysts: A comparative study of kinetics, stability, and reusability of the immobilized enzyme.
Food Chemistry, vol. 245, pp. 488- 499, 2018.
[24] J. Matthiesen, S. Wendt, J. O. Hansen, G. K. Madsen, E. Lira, P. Galliker, E. K. Vestergaard, R. Schaub, E. Laegsgaard,
B. Hammer, F. Besenbacher. Observation of All the Intermediate Steps of a Chemical Reaction on an Oxide Surface by Scanning
Tunnelling Microscopy. ACS Nano., vol. 3(3), pp. 517–526, 2009.
[25] M. E. Davis, R. J. Davis. Fundamentals of Chemical Reaction Engineering, New York, McGraw-Hill Company, 2003.
[26] H. S. Fogler. Essentials of chemical reaction engineering. 4th Edition, Westford, MA, Pearson Education, 2006.
[27] B. Andersson. Computational fluid dynamics for engineers, Cambridge, Cambridge University Press, 2012.
[28] J. C. Ching, J. Sheng-Yuh. Fundamentals of turbulence modeling, Abingdon, Taylor & Francis, 1998.
[29] A. Christoph, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen, B. Kaeppeli, A. Stampanoni. An experimental and numerical
investigation of homogeneous ignition in catalytically stabilized combustion of hydrogen/air mixtures over platinum.
Combustion and Flame, vol. 128(4), pp. 340-368, 2002.
[30] A. Muhammad. Computational fluid dynamics (CFD) prediction of mass fraction profiles of gas oil and gasoline in fluid
catalytic cracking (FCC) riser. Ain Shams Engineering Journal, vol. 3(4), pp. 403-409, 2012.
[31] T. I. Dominick, I. E. Specht. Experimental and Numerical Analysis of Flow Mixing in Packed Beds, Doctoral Thesis, Otto von Guericke University, Magdeburg, 2016.
[32] D. Afshin. Evaluation of Adding Carbon Tetrachloride as Propulsion to the Thermal Cracking Reactor due to the Amount of Formed
Coke in Different Coil Outlet Temperatures (COT). J. Thermodyn. Catal., vol. 8(179), pp. 2, 2017.
[33] W. Rodi. Turbulence models and their application in hydraulics. Florida, CRC Press, 2017.
[34] J. Sodja. Turbulence models in CFD, Technical Report, University of Ljubljana, Ljubljana, pp.1-18, 2007.
[35] S. S. Girimaji. Pressure–strain correlation modeling of complex turbulent flows. Journal of Fluid Mechanics, vol. 422, pp. 91-123, 2000.
[36] C. Stephen, D. Caraeni, L. Fuchs. Large-eddy simulation of the flow through the blades of a swirl generator.
International journal of heat and fluid flow, vol. 21(5), pp. 664-673, 2000.
[37] J. Lumley, G. Newman. The return to isotropy of homogeneous turbulence, Journal of Fluid Mechanics, vol. 82, pp. 161–178, 1977.
[38] A. Mishra, S. Girimaji. Intercomponent energy transfer in incompressible homogeneous turbulence: multi-point physics
and amenability to one-point closures, Journal of Fluid Mechanics, vol. 731, pp. 639–681, 2013.
[39] X. Xiaomin, J. Dai, Z. Luo. CFD modeling using heterogeneous reaction kinetics for catalytic dehydrogenation syngas
reactions in a fixed-bed reactor. Particuology, vol. 11(6), pp. 703-714, 2013.
[40] L. J. Rodrigo, F. M. Rosa-Quinta. Turbulence modeling of multiphase flow in highpressure trickle-bed reactors.
Chemical Engineering Science, vol. 64(8), pp. 1806-1819, 2009.
[41] W. Binxin. Computational fluid dynamics investigation of turbulence models for non- Newtonian fluid flow in anaerobic digesters.
Environmental science & technology, vol. 44(23), pp. 8989-8995, 2010.
[42] U. K. Zhapbasbayev, G. I. Ramazanova, O. B. Kenzhaliev. Modeling of turbulent flow in a radial reactor with a fixed bed,
Thermophysics and Aeromechanics, vol. 22(2), pp. 229-243, 2015.
[43] A. Muhammed. Prediction of gasoline yield in a fluid catalytic cracking (FCC) riser using k-epsilon turbulence
and 4-lump kinetic models: A computational fluid dynamics (CFD) approach. Journal of King Saud University-Engineering Sciences,
vol, 27(2), 130-136, 2015.
[44] A. Gianetto, H. I. Farag, A. P. Blasetti, H. I. de Lasa. Fluid catalytic cracking catalyst for reformulated gasoline.
Kinetic modeling. Industrial & engineering chemistry research, vol. 33(12), pp. 3053-3062, 1994.