[1] C.M. Chang, Y.L. Liu, Electrical conductivity enhancement of polymer/multiwalled carbon nanotube (MWCNT) composites by thermally-induced defunctionalization of MWCNTs. ACS Appl. Mater. Interfaces 3 (2011) 2204–2208. [2] J. Du, P. Liu, Y. Zeng, Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube-polymer interactions. Carbon 48 (2010) 3551.
[3] N.C.Billingham, P.D.Calvert, P.J.S.Foot, F.Mohammad, Stability and degradation of some electrically conducting polymers. Polymer Degradation and Stability 19(4) (1987) 323-341. [4] P. Foot, T. Ritchie, F. Mohammad, Mechanisms of chemical undoping of conducting polymers by ammonia. J. Chem. Soc., Chem. Commun. 23 (1988) 1536-1537.
[5] F. Mohammad, P D Calvert, N C Billingham, Electrical and electronic properties of polyparaphenylenes. J. Phys. D, Appl. Phys. 29 (1996) 195-204 (IOP, UK).
[6] F. Mohammad, Compensation behaviour of electrically conductive polythiophene and polypyrrole. J. Phys. D, Appl. Phys., 31(1988) 951-959 (IOP, UK). [7] F. Mohammad, M. O. Ansari, S. K. Yadav, J.W. Cho, Thermal stability in terms of DC electrical conductivity retention and the efficacy of mixing technique in the preparation of nanocomposites of graphene/polyaniline over the carbon nanotubes/polyaniline. Composites Part B 47 (2013) 155.
[8] C. Basavaraja, Y.M. Choi, H.T. Park, D.S. Huh, J.W Lee, M. Revanasiddappa, S.C. Raghavendra, S. Khasim, T.K. Vishnuvardhan, Preparation, characterization and low-frequency AC conduction of polypyrrole-lead titanate composites. Bull. Korean Chem. Soc. 28 (2007) 1104.
[9] J. Bae, J. Jang, M. Choi, et al., Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor. Carbon 43 (2005) 2730–2736.
[10] J. Zhang, D. Shan and S. L. Mu, A rechargeable Zn- poly(aniline-co-m-aminophenol) battery. J. Power Sources 161 (2006) 685–691.
[11] H. He, J. Zhu, N. J. Tao et al., A conducting polymer nanojunction switch. J. Am. Chem. Soc. 123(31) (2001) 7730-7731. [12] K. P. Sandhya, S. Haridas, S. Sugunan, Visible light-induced photocatalytic activity of polyaniline modified TiO2 and clay-TiO2 composites. Bull. Chem.React. Eng. Catal. 8 (2013) 145–153. [13] M. Kazes, N. Tessler, V. Medvedevet et al., Efficient near-infrared polymer nanocrystal light emitting diodes. Science 295 (2002) 1506–1508. [14] A. Sultan, S. Ahmad, T. Anwer, F. Mohammad, Rapid response and excellent recovery of a polyaniline/silicon carbide nanocomposite for cigarette smoke sensing with enhanced thermally stable DC electrical conductivity. RSC Adv. 5 (2015) 105980–110599.
[15] F. Mohammad and M.O.Ansari, Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO2) nanocomposites. Sens. Actuators, B 157 (2011) 122–129.
[16] F. Mohammad, M. O. Ansari, T. Anwer, Morphology and thermal stability of electrically conducting nanocomposites prepared by sulfosalicylic acid micelles assisted polymerization of aniline in presence of ZrO2 nanoparticles. Polym.–Plast. Technol. Eng. 52 (2013) 472–477. [17] F. Mohammad and M.O. Ansari, Thermal stability of HCl-doped-polyaniline and TiO2 nanoparticles based nanocomposites. J. Appl. Polym. Sci. 124 (2012) 4433–4442.
[18] F. Mohammad and M.O. Ansari, Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO2) nanocomposites. Sens. Actuators, B 157 (2011) 122–129. [19] A. De and R. Gangopadhyay, Conducting polymer nanocomposites: a brief overview. Chem. Mater. 12(3) (2000) 608–622. [20] H.L. Tsai, J.L. Schindler, C.R. Kannewurf, M.G. Kanatzidis, Plastic superconducting polymer-NbSe2 nanocomposites. Chem. Mater. 9(4) (1997) 875–878. [21] Nazar, L. F.; Zhang, Z.; Zinkweg, D. Insertion of poly(p-phenylenevinylene) in layered MoO3. J. Am. Chem. Soc 114(15) (1992) 6239–6240. [22] J.L. Schindler, M.G. Kanatzidis, R. Bissessur, et al., Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2. J. Chem. Soc., Chem. Commun. 20 (1993) 1582-1585. [23] C.J. Murphy, J. Huang, K. Sooklal, Polyamine-quantum dot nanocomposites: linear versus starburst stabilizer architectures. Chem. Mater. 11 (12) (1999) 3595–3601.
[24] Aleala, M.; Burgess, Cao, G.; Garcia, M. E.; et al., Chiral molecular recognition in intercalated zirconium phosphate. J. Am. Chem.Soc. 114 (1992) 7574.
[25] G. Sugiyama, M. Matsuguchi, Y. Sakai, Effect of NH3 gas on the electrical conductivity of polyaniline blend films. Synth.Met. 128 (2002) 15-19.
[26] F. Quaranta, P. Siciliano, R. Rella, et al., Gas sensing measurements and analysis of the optical properties of poly[3-(butylthio)thiophene] Langmuir–Blodgett films. Sens. Actuators B, 68 (2000) 203-209.
[27] M. Aldissi, M.K. Ram, O. Yavuz, NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposites. Synth. Met. 151 (2005) 77-84.
[28] M. Rajasekhar, P. Gnanakan, S. Richard, et al., Synthesis of polythiophene nanoparticles by surfactant-assisted dilute polymerization method for high-performance redox supercapacitors. Int. J. Electrochem. Sci. 4 (2009) 1289.
[29] D.F. Perepichka, H. Meng, M. Bendikov, et al., Solid-state synthesis of a conducting polythiophene via an unprecedented heterocyclic coupling reaction. J. Am. Chem. Soc. 125(49) (2003) 15151–15162.
[30] M. Biswas and N. Ballav, Preparation and evaluation of a nanocomposite of polythiophene with Al2O3. Polym. Int. 52 (2003) 179–184.
[31] M. Pavlik, N. Hebestreit, Q.T. Vu et al., Nanocomposites based on titanium dioxide and polythiophene: structure and properties. Reactive & Functional Polymers 65 (2005) 69-77.
[32] J. Zhang, M. Xu, S. Wang et al., Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic-organic hybrids. Sensors and Actuators B, 146 (2010) 8–13.
[33] J. Huang, T. Yang, Y. Kang, et al. Preparation of polythiophene/WO3 organic-inorganic hybrids and their gas sensing properties for NO2 detection at low temperature. Journal of Natural Gas Chemistry 20 (2011) 403–407.
[34] D.V. Pinjari, S.S. Barkade, U.T. Nakate, A.K. Singh, P.R. Gogate, S.H. Sonawane, A.B. Pandit, J. Naik, Ultrasound-assisted synthesis of polythiophene/SnO2 hybrid nanolatex particles for LPG sensing. Chemical Engineering and Processing 74 (2013) 115– 123.
[35] E. Tahmasebi, M. Moradi, Y. Yamini, A. Esrafili, Polythiophene-coated Fe3O4 superparamagnetic nanocomposite: synthesis and application as a new sorbent for solid-phase extraction. Analytica Chimica Acta 770 (2013) 68–74.
[36] B. Divband, M. Fazayeli, M. Khatamian, Preparation, characterization and photocatalytic properties of polythiophene-sensitized zinc oxide hybrid nanocomposites. Materials Science in Semiconductor Processing 26 (2014) 540–547.
[37] C. J. Lee, M. S. Lee, M. R. Karim, Synthesis and characterization of conducting polythiophene/carbon nanotubes composites. Int J Polym Sci Part A: Polym Chem, 44 (2006) 5283–5290.
[38] M. Okutan S.E San, Y. Yerli et al., Temperature dependency of electrical behaviors in single walled carbon-nanotube/conducting polymer composites. Materials Science and Engineering B 138 (2007) 284–288.
[39] J.H. Yeum, M.R. Karim, M.S. Lee et al., Synthesis of conducting polythiophene composites with multi-walled carbon nanotube by the ɤ-radiolysis polymerization method. Materials Chemistry and Physics 112 (2008) 779–782.
[40] D. Wang, L. Wang, X. Jia et al., Preparation and thermoelectric properties of polythiophene/multiwalled carbon nanotube composites. Synthetic Metals 181 (2013) 79– 85.
[41] B.J Saikia, C. Bora, R. Pegu et al., Synthesis of polythiophene/graphene oxide composites by interfacial polymerization and evaluation of their electrical and electrochemical properties. Polym Int 63 (2014) 2061-2067.
[42] M.A. Jose, M.J. Antony, T.S. Swathy, AOT assisted preparation of ordered, conducting and dispersible core-shell nanostructured polythiophene-MWCNT nanocomposites. Polymer 103 (2016) 206-213.
[43] X. Hong, X. Wang, Y. Xie, et al. Preparation and electromagnetic properties of La-doped barium-ferrite/polythiophene composites. Synthetic Metals, 162 (2012) 1643– 1647.
[44] G. Ma, L. Li, X. Liang, et al. Cu-doped zinc oxide and its polythiophene composites: Preparation and antibacterial properties. Chemosphere 100 (2014) 146–151.
[45] S. Wang, W. Chu, Y. Wang et al., Simple synthesis and photoelectrochemical characterizations of polythiophene/Pd/TiO2 composite microspheres. ACS Appl. Mater. Interfaces 6(22) (2014) 20197–20204.
[46] A. Jabbari, A. Mehdinia, N. Khodaee, Fabrication of graphene/Fe3O4@ polythiophene nanocomposite and its application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Analytica Chimica Acta 868 (2015) 1-9.
[47] M.R. Chandra, T.S. Rao, S.V.N Pammi, B. Sreedhar, An enhanced visible light active rutile titania-copper/polythiophene nanohybrid material for the degradation of rhodamine B dye. Mat. Sci. Semicon. Proc. 30 (2015) 672-681.
[48] M.R. Chandra, P.S.P Reddy, T.S. Rao et al., Enhanced visible-light photocatalysis and gas sensor properties of polythiophene supported tin-doped titanium nanocomposites. Journal of Physics and Chemistry of Solids 105 (2017) 99–105.
[49] H. Bagheri, S. Banihashemi, S. Jelvani, A polythiophene–silver nanocomposite for headspace needle trap extraction. Journal Of Chromatography A 1460 (2016) 1-8.
[50] C. Shanmugapriya, G. Velraj, Investigation on structural and electrical properties of FeCl3 doped polythiophene (PT) blended with micro and nano copper particles by mechanical mixing. Optik 127 (2016) 8940-8950.
[51] F. Kong, J. Zhang, Y. Wang et al., The preparation and gas sensitivity study of polythiophene/SnO2 composites. Materials Science and Engineering B 150 (2008) 6–11
[52] A.G. Yavuza, A. Uyguna, S. Sen et al., Polythiophene/SiO2 nanocomposites prepared in the presence of surfactants and their application to glucose biosensing. Synthetic Metals 159 (2009) 2022–2028.
[53] A. Tripathi, I. Bahadur, S.K. Mishra et al., Optical properties of regiorandom polythiophene/Al2O3 nanocomposites and their application to ammonia gas sensing. J Mater Sci: Mater Electron 26 (2015) 7421.
[54] J. Guo, J. Sun, S. Bai et al., Enhancement of NO2 sensing performance at room temperature by graphene modified polythiophene. Ind. Eng. Chem. 55 (19) (2016) 5788-5794.
[55] D. Yi, S. Xu, Y. Zhu. Photocatalytic degradation of methyl orange usingpolythiophene/titanium dioxide composites. Reactive & Functional Polymers, 70 (2010) 282–287.
[56] S.H. Xu, S.Y. Li, Y.X. Wei et al., Improving the photocatalytic performance of conducting polymer polythiophene sensitized TiO2 nanoparticles under sunlight irradiation. Reac Kinet Mech Cat 101 (2010) 237–249
[57] H.R. Jung and W.J. Lee, Ag/poly (3,4-ethylenedioxythiophene) nanocomposites as
anode materials for lithium-ion battery. Solid State Ionics 187 (2011) 50–57
[58] C.M. Verdejo, E.N. Schulz, J.P. Melo et al., Synthesis and characterization of graphene/polythiophene (GR/PT) nanocomposites: evaluation as high-performance supercapacitor electrodes. Int. J. Electrochem. Sci. 12 (2017) 2933 – 2948.
[59] K. Majid and M.H. Najar, Synthesis and characterization of nanocomposite of polythiophene with Na2[Fe(CN)3(OH)(NO)C6H12N4]H2O: a potent material for EMI shielding applications. J Mater Sci: Mater Electron 26 (2015) 6458–6470.
[60] M.O. Ansari, M.M. Khan, S.A. Ansari, M.H. Cho, Polythiophene nanocomposites for photodegradation applications: past, present and future. Journal of Saudi Chemical Society (2015) DOI: http://dx.doi.org/10.1016/j.jscs.2015.06.004. [61] R.S. Bobade, Polythiophene composites: a review of selected applications. Journal of Polymer Engineering 31(2-3) (2011) 209-215.