Preparation and Applications of Polythiophene Nanocomposites

Ahmad Husain, Sharique Ahmad, Faiz Mohammad

Keywords: Polythiophenes, Nanocomposites, Sensors, In-situ polymerization, Photo-catalyst.

Issue III, Volume II, Pages 36- 53

Polythiophene (PTh) nanocomposites are unique and attractive materials because of their

excellent electrical, electro-chromic and electronic properties with high environmental and

thermal stabilities. Polythiophenes and their nanocomposites are gaining importance and use

as conducting materials in the industries and in a wide range of potential applications including

chemical/optical sensors, light-emitting diodes, display devices, photovoltaics/solar cells, transistors,

rechargeable batteries, supercapacitors, EMI shielding etc. A comprehensive review on the preparation

of nanocomposites based on polythiophenes using several types of materials such as metal oxides nanoparticles,

metal nanoparticles, graphene, carbon nanotubes etc. and their potential applications in various scientific

fields have been discussed in this article.

[1] C.M. Chang, Y.L. Liu, Electrical conductivity enhancement of polymer/multiwalled carbon nanotube (MWCNT) composites by thermally-induced defunctionalization of MWCNTs. ACS Appl. Mater. Interfaces 3 (2011) 2204–2208. [2] J. Du, P. Liu, Y. Zeng, Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube-polymer interactions. Carbon 48 (2010) 3551.

[3] N.C.Billingham, P.D.Calvert, P.J.S.Foot, F.Mohammad, Stability and degradation of some electrically conducting polymers. Polymer Degradation and Stability 19(4) (1987) 323-341. [4] P. Foot, T. Ritchie, F. Mohammad, Mechanisms of chemical undoping of conducting polymers by ammonia. J. Chem. Soc., Chem. Commun. 23 (1988) 1536-1537.

[5] F. Mohammad, P D Calvert, N C Billingham, Electrical and electronic properties of polyparaphenylenes. J. Phys. D, Appl. Phys. 29 (1996) 195-204 (IOP, UK).

[6] F. Mohammad, Compensation behaviour of electrically conductive polythiophene and polypyrrole. J. Phys. D, Appl. Phys., 31(1988) 951-959 (IOP, UK). [7] F. Mohammad, M. O. Ansari, S. K. Yadav, J.W. Cho, Thermal stability in terms of DC electrical conductivity retention and the efficacy of mixing technique in the preparation of nanocomposites of graphene/polyaniline over the carbon nanotubes/polyaniline. Composites Part B 47 (2013) 155.

[8] C. Basavaraja, Y.M. Choi, H.T. Park, D.S. Huh, J.W Lee, M. Revanasiddappa, S.C. Raghavendra, S. Khasim, T.K. Vishnuvardhan, Preparation, characterization and low-frequency AC conduction of polypyrrole-lead titanate composites. Bull. Korean Chem. Soc. 28 (2007) 1104.

[9] J. Bae, J. Jang, M. Choi, et al., Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor. Carbon 43 (2005) 2730–2736.

[10] J. Zhang, D. Shan and S. L. Mu, A rechargeable Zn- poly(aniline-co-m-aminophenol) battery. J. Power Sources 161 (2006) 685–691.

[11] H. He, J. Zhu, N. J. Tao et al., A conducting polymer nanojunction switch. J. Am. Chem. Soc. 123(31) (2001) 7730-7731. [12] K. P. Sandhya, S. Haridas, S. Sugunan, Visible light-induced photocatalytic activity of polyaniline modified TiO2 and clay-TiO2 composites. Bull. Chem.React. Eng. Catal. 8 (2013) 145–153. [13] M. Kazes, N. Tessler, V. Medvedevet et al., Efficient near-infrared polymer nanocrystal light emitting diodes. Science 295 (2002) 1506–1508. [14] A. Sultan, S. Ahmad, T. Anwer, F. Mohammad, Rapid response and excellent recovery of a polyaniline/silicon carbide nanocomposite for cigarette smoke sensing with enhanced thermally stable DC electrical conductivity. RSC Adv. 5 (2015) 105980–110599.

[15] F. Mohammad and M.O.Ansari, Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO2) nanocomposites. Sens. Actuators, B 157 (2011) 122–129.

[16] F. Mohammad, M. O. Ansari, T. Anwer, Morphology and thermal stability of electrically conducting nanocomposites prepared by sulfosalicylic acid micelles assisted polymerization of aniline in presence of ZrO2 nanoparticles. Polym.–Plast. Technol. Eng. 52 (2013) 472–477. [17] F. Mohammad and M.O. Ansari, Thermal stability of HCl-doped-polyaniline and TiO2 nanoparticles based nanocomposites. J. Appl. Polym. Sci. 124 (2012) 4433–4442.

[18] F. Mohammad and M.O. Ansari, Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO2) nanocomposites. Sens. Actuators, B 157 (2011) 122–129. [19] A. De and R. Gangopadhyay, Conducting polymer nanocomposites: a brief overview. Chem. Mater. 12(3) (2000) 608–622. [20] H.L. Tsai, J.L. Schindler, C.R. Kannewurf, M.G. Kanatzidis, Plastic superconducting polymer-NbSe2 nanocomposites. Chem. Mater. 9(4) (1997) 875–878. [21] Nazar, L. F.; Zhang, Z.; Zinkweg, D. Insertion of poly(p-phenylenevinylene) in layered MoO3. J. Am. Chem. Soc 114(15) (1992) 6239–6240. [22] J.L. Schindler, M.G. Kanatzidis, R. Bissessur, et al., Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2. J. Chem. Soc., Chem. Commun. 20 (1993) 1582-1585. [23] C.J. Murphy, J. Huang, K. Sooklal, Polyamine-quantum dot nanocomposites: linear versus starburst stabilizer architectures. Chem. Mater. 11 (12) (1999) 3595–3601.

[24] Aleala, M.; Burgess, Cao, G.; Garcia, M. E.; et al., Chiral molecular recognition in intercalated zirconium phosphate. J. Am. Chem.Soc. 114 (1992) 7574.

[25] G. Sugiyama, M. Matsuguchi, Y. Sakai, Effect of NH3 gas on the electrical conductivity of polyaniline blend films. Synth.Met. 128 (2002) 15-19.

[26] F. Quaranta, P. Siciliano, R. Rella, et al., Gas sensing measurements and analysis of the optical properties of poly[3-(butylthio)thiophene] Langmuir–Blodgett films. Sens. Actuators B, 68 (2000) 203-209.

[27] M. Aldissi, M.K. Ram, O. Yavuz, NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposites. Synth. Met. 151 (2005) 77-84.

[28] M. Rajasekhar, P. Gnanakan, S. Richard, et al., Synthesis of polythiophene nanoparticles by surfactant-assisted dilute polymerization method for high-performance redox supercapacitors. Int. J. Electrochem. Sci. 4 (2009) 1289.

[29] D.F. Perepichka, H. Meng, M. Bendikov, et al., Solid-state synthesis of a conducting polythiophene via an unprecedented heterocyclic coupling reaction. J. Am. Chem. Soc. 125(49) (2003) 15151–15162.

[30] M. Biswas and N. Ballav, Preparation and evaluation of a nanocomposite of polythiophene with Al2O3. Polym. Int. 52 (2003) 179–184.

[31] M. Pavlik, N. Hebestreit, Q.T. Vu et al., Nanocomposites based on titanium dioxide and polythiophene: structure and properties. Reactive & Functional Polymers 65 (2005) 69-77.

[32] J. Zhang, M. Xu, S. Wang et al., Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic-organic hybrids. Sensors and Actuators B, 146 (2010) 8–13.

[33] J. Huang, T. Yang, Y. Kang, et al. Preparation of polythiophene/WO3 organic-inorganic hybrids and their gas sensing properties for NO2 detection at low temperature. Journal of Natural Gas Chemistry 20 (2011) 403–407.

[34] D.V. Pinjari, S.S. Barkade, U.T. Nakate, A.K. Singh, P.R. Gogate, S.H. Sonawane, A.B. Pandit, J. Naik, Ultrasound-assisted synthesis of polythiophene/SnO2 hybrid nanolatex particles for LPG sensing. Chemical Engineering and Processing 74 (2013) 115– 123.

[35] E. Tahmasebi, M. Moradi, Y. Yamini, A. Esrafili, Polythiophene-coated Fe3O4 superparamagnetic nanocomposite: synthesis and application as a new sorbent for solid-phase extraction. Analytica Chimica Acta 770 (2013) 68–74.

[36] B. Divband, M. Fazayeli, M. Khatamian, Preparation, characterization and photocatalytic properties of polythiophene-sensitized zinc oxide hybrid nanocomposites. Materials Science in Semiconductor Processing 26 (2014) 540–547.

[37] C. J. Lee, M. S. Lee, M. R. Karim, Synthesis and characterization of conducting polythiophene/carbon nanotubes composites. Int J Polym Sci Part A: Polym Chem, 44 (2006) 5283–5290.

[38] M. Okutan S.E San, Y. Yerli et al., Temperature dependency of electrical behaviors in single walled carbon-nanotube/conducting polymer composites. Materials Science and Engineering B 138 (2007) 284–288.

[39] J.H. Yeum, M.R. Karim, M.S. Lee et al., Synthesis of conducting polythiophene composites with multi-walled carbon nanotube by the ɤ-radiolysis polymerization method. Materials Chemistry and Physics 112 (2008) 779–782.

[40] D. Wang, L. Wang, X. Jia et al., Preparation and thermoelectric properties of polythiophene/multiwalled carbon nanotube composites. Synthetic Metals 181 (2013) 79– 85.

[41] B.J Saikia, C. Bora, R. Pegu et al., Synthesis of polythiophene/graphene oxide composites by interfacial polymerization and evaluation of their electrical and electrochemical properties. Polym Int 63 (2014) 2061-2067.

[42] M.A. Jose, M.J. Antony, T.S. Swathy, AOT assisted preparation of ordered, conducting and dispersible core-shell nanostructured polythiophene-MWCNT nanocomposites. Polymer 103 (2016) 206-213.

[43] X. Hong, X. Wang, Y. Xie, et al. Preparation and electromagnetic properties of La-doped barium-ferrite/polythiophene composites. Synthetic Metals, 162 (2012) 1643– 1647.

[44] G. Ma, L. Li, X. Liang, et al. Cu-doped zinc oxide and its polythiophene composites: Preparation and antibacterial properties. Chemosphere 100 (2014) 146–151.

[45] S. Wang, W. Chu, Y. Wang et al., Simple synthesis and photoelectrochemical characterizations of polythiophene/Pd/TiO2 composite microspheres. ACS Appl. Mater. Interfaces 6(22) (2014) 20197–20204.

[46] A. Jabbari, A. Mehdinia, N. Khodaee, Fabrication of graphene/Fe3O4@ polythiophene nanocomposite and its application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Analytica Chimica Acta 868 (2015) 1-9.

[47] M.R. Chandra, T.S. Rao, S.V.N Pammi, B. Sreedhar, An enhanced visible light active rutile titania-copper/polythiophene nanohybrid material for the degradation of rhodamine B dye. Mat. Sci. Semicon. Proc. 30 (2015) 672-681.

[48] M.R. Chandra, P.S.P Reddy, T.S. Rao et al., Enhanced visible-light photocatalysis and gas sensor properties of polythiophene supported tin-doped titanium nanocomposites. Journal of Physics and Chemistry of Solids 105 (2017) 99–105.

[49] H. Bagheri, S. Banihashemi, S. Jelvani, A polythiophene–silver nanocomposite for headspace needle trap extraction. Journal Of Chromatography A 1460 (2016) 1-8.

[50] C. Shanmugapriya, G. Velraj, Investigation on structural and electrical properties of FeCl3 doped polythiophene (PT) blended with micro and nano copper particles by mechanical mixing. Optik 127 (2016) 8940-8950.

[51] F. Kong, J. Zhang, Y. Wang et al., The preparation and gas sensitivity study of polythiophene/SnO2 composites. Materials Science and Engineering B 150 (2008) 6–11

[52] A.G. Yavuza, A. Uyguna, S. Sen et al., Polythiophene/SiO2 nanocomposites prepared in the presence of surfactants and their application to glucose biosensing. Synthetic Metals 159 (2009) 2022–2028.

[53] A. Tripathi, I. Bahadur, S.K. Mishra et al., Optical properties of regiorandom polythiophene/Al2O3 nanocomposites and their application to ammonia gas sensing. J Mater Sci: Mater Electron 26 (2015) 7421.

[54] J. Guo, J. Sun, S. Bai et al., Enhancement of NO2 sensing performance at room temperature by graphene modified polythiophene. Ind. Eng. Chem. 55 (19) (2016) 5788-5794.

[55] D. Yi, S. Xu, Y. Zhu. Photocatalytic degradation of methyl orange usingpolythiophene/titanium dioxide composites. Reactive & Functional Polymers, 70 (2010) 282–287.

[56] S.H. Xu, S.Y. Li, Y.X. Wei et al., Improving the photocatalytic performance of conducting polymer polythiophene sensitized TiO2 nanoparticles under sunlight irradiation. Reac Kinet Mech Cat 101 (2010) 237–249

[57] H.R. Jung and W.J. Lee, Ag/poly (3,4-ethylenedioxythiophene) nanocomposites as

anode materials for lithium-ion battery. Solid State Ionics 187 (2011) 50–57

[58] C.M. Verdejo, E.N. Schulz, J.P. Melo et al., Synthesis and characterization of graphene/polythiophene (GR/PT) nanocomposites: evaluation as high-performance supercapacitor electrodes. Int. J. Electrochem. Sci. 12 (2017) 2933 – 2948.

[59] K. Majid and M.H. Najar, Synthesis and characterization of nanocomposite of polythiophene with Na2[Fe(CN)3(OH)(NO)C6H12N4]H2O: a potent material for EMI shielding applications. J Mater Sci: Mater Electron 26 (2015) 6458–6470.

[60] M.O. Ansari, M.M. Khan, S.A. Ansari, M.H. Cho, Polythiophene nanocomposites for photodegradation applications: past, present and future. Journal of Saudi Chemical Society (2015) DOI: http://dx.doi.org/10.1016/j.jscs.2015.06.004. [61] R.S. Bobade, Polythiophene composites: a review of selected applications. Journal of Polymer Engineering 31(2-3) (2011) 209-215.