[1] G.A. Anastassiou, Salahuddin, Weakly set valued generalized vector variational inequalities,
J. Comput. Anal. Appl. 15(4) (2013) 622-632.
[2] Q.H. Ansari, W. Oettli, D. Schlager, A generalization of vectorial equilibria, Math. Methods
Oper. Res. 46 (1997) 147–152.
[3] Q.H. Ansari, I.V. Konnov, J.C. Yao, Existence of a solution and variational principles for
vector equilibrium problems, J. Optim. Theory Appl. 110 (2001) 481–492.
[4] Q.H. Ansari, I.V. Konnov, J.C. Yao, Characterizations of solutions for vector equilibrium
problems, J. Optim. Theory Appl. 113 (2002) 435–447.
[5] Q.H. Ansari, F. Flores-Bazan, Recession methods for generalized vector equilibrium problems,
J. Math. Anal. Appl. 321 (2006), 132–146.
[6] Q.H. Ansari, Vector equilibrium problems and vector variational inequalities. In: F. Giannessi
(Ed.), Vector Variational Inequalities and Vector Equilibria, Kluwer Academic Publishers,
Dordrecht (2000), pp. 1–15.
[7] J.P. Aubin, Applied Functional Analysis, John Wiley & Sons, New York, 2000.
[8] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems,
Math. Stud. 63 (1994) 123–145.
[9] S.S. Chang, Y.G. Zhu, On variational inequalities for fuzzy mappings, Fuzzy Sets Syst. 32
(1989) 359–367.
[10] S.S. Chang, N.J. Huang, Generalized complementarity problem for fuzzy mappings, Fuzzy
Sets Syst. 55 (1993), 227–234.
[11] S.S. Chang, K.K. Tan, Equilibria and maximal elements of abstract fuzzy economics and
qualitative fuzzy games, Fuzzy Sets Syst. 125 (2002) 389–399.
[12] S.S. Chang, Salahuddin, Existence theorems for vector quasi variational-like inequalities for
fuzzy mappings, Fuzzy Sets Syst. 233 (2013) 89–95.
[13] Y. Chiang, O. Chadli, J.C. Yao, Generalized vector equilibrium problems with trifunctions, J.
Glob. Optim. 30 (2004) 135–154.
[14] X.P. Ding, Quasi-equilibrium problems in noncompact generalized convex spaces, Appl.
Math. Mech. 21(6) (2000) 637—644.
[15] X.P. Ding, J.Y. Park, A new class of generalized nonlinear implicit quasi-variational inclusions
with fuzzy mapping, J. Comput. Appl. Math. 138 (2002) 243–257.
[16] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1961) 303–310.
[17] K. Fan, A minimax inequality and its applications. In: O. Shisha (Ed.), Inequalities, Vol. (3),
Academic Press, New York, 1972, pp. 103–113.
[18] F. Giannessi, Vector Variational Inequalities and Vector Equilibria, Mathematical theories,
Kluwer, Dordrecht, 2000.
[19] X. Gong, Efficiency and Henig efficiency for vector equilibrium problems, J. Optim. Theory
Appl. 108 (2001) 139–154.
[20] X. Gong, Strong vector equilibrium problems, J. Global Optim. 36 (2006) 339–349.
[21] A. Gopfert, H. Riahi, C. Tammer, C. Zalinescu, Variational Methods in Partially Ordered
Spaces, Springer, New York, 2003.
[22] S. Heilpern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl. 83 (1981) 566–569.
[23] N.J. Huang, H.Y. Lan, A couple of nonlinear equations with fuzzy mappings in fuzzy normed
spaces, Fuzzy Sets Syst. 152 (2005), 209–222.
[24] M.F. Khan, S. Husain, Salahuddin, A fuzzy extension of generalized multi-valued h-mixed
vector variational-like inequalities on locally convex Hausdorff topological vector spaces,
Bull. Cal. Math. Soc. 100(I) (2008) 27–36.
[25] W.K. Kim, K.H. Lee, Generalized fuzzy games and fuzzy equilibria, Fuzzy Sets Syst. 122
(2001), 293–301.
[26] H.Y. Lan, R.U. Verma, Iterative algorithms for nonlinear fuzzy variational inclusions with
(A;h)-accretive mappings in Banach spaces, Adv. Nonlinear Var. Inequal. 11(1) (2008) 15–30.
[27] G.M. Lee, D.S. Kim, B.S. Lee, Vector variational inequality for fuzzy mappings, Nonlinear
Anal. Forum 4 (1999) 119–129.
[28] B.S. Lee, M.F. Khan, Salahuddin, Fuzzy nonlinear set-valued variational inclusions, Comput.
Math. Appl. 60(6) (2010) 1768–1775.
[29] J. Li, N. J. Huang, J. K. Kim, On implicit vector equilibrium problems, J. Math. Anal. Appl.
283 (2003), 501–502.
[30] A. Moudafi, Mixed equilibrium problems: sensitivity analysis and algorithmic aspect, Comput.
Math. Appl. 44 (2002) 1099–1108.
[31] M. Rahaman, R. Ahmad, Fuzzy vector equilibrium problems, Iranian J. Fuzzy Syst. 12(1)
(2015) 115–122.
[32] E. Shivanan, E. Khorram, Optimization of linear objective function subject to fuzzy relation
inequalities constraints with max-product composition, Iranian J. Fuzzy Syst. 7(5) (2010),51–71.
[33] C.H. Su, V.M. Sehgal, Some fixed point theorems for condensing multi-functions in locally
convex spaces, Proc. Natl. Acad. Sci. USA 50 (1975) 150–154.
[34] E. Tarafdar, Fixed point theorems in H-spaces and equilibrium points of abstract economies,
J. Austral. Math. Soc. Ser. A 53 (1992), 252–260.
[35] G. Xiao, Z. Fan, R. Qi, Existence results for generalized nonlinear vector variational-like
inequalities with set valued mapping, Appl. Math. Lett. 23 (2010) 44–47.
[36] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338–353.
[37] H.J. Zimmermann, Fuzzy set Theory and Its Applications, Kluwer Academic Publishers,
Dordrecht, 1988.