Investigation of Interfacial Magnetic Properties of Co/C60 Hybrid Interface

Mohd Taukeer Khan, Abdullah Almohammedi

Keywords: Organic spintronics, fullerene, X-ray Reflectivity, magnetoresistance, spin-polarized current

Issue I, Volume I, Pages 94-106

The present work demonstrates a detail investigation of interfacial magnetic properties

of cobalt (Co)/fullerene (C60) based ferromagnetic/organic (F/O) hybrid interface. The interfacial

structural properties of Co, C60 and hybrid interface have been analyzed by X-ray reflectivity

(XRR), both computationally and experimentally. The results shows that the grown films have

smooth surface (roughness < 0.5 nm) and intermixing at the interface between organic and

inorganic layers is less than 1 nm. The spin injection at the hybrid interface was studied by

recording the magnetic hysteresis loop at 100 K and photoemission of hybrid interface under the

applied bias and magnetic field. It has been observed that due to interfacial spin polarized

electron transfer at F/O interface, the photoemission of C60 reduces, coercivity of the cobalt

increases which give about 18% spin polarization of the carriers injected in C60. Finally, the

performance of C60 based tunnel junction have been studied in the device configuration viz.

Co/Al2O3/C60/Py. The magneto resistance (MR) of up to 10 % is obtained for device which

having C60 layer of thickness 10 nm.

[1] J. Burroughes, C. Jones, and R.H. Friend, New semiconductor device physics in polymer

diodes and transistors, Nature, 335 (1988) 137.

[2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H.

Friend, P. L. Burn, and A. B. Holmes. Light-emitting diodes based on conjugated polymers,

Nature, 347 (1990) 539.

[3] A. Zampetti A. Minotto F. Cacialli, Near‐Infrared (NIR) Organic Light‐Emitting Diodes

(OLEDs): Challenges and Opportunities, Adv. Funct. Sci., January (2019)

[4] M. Ahles, A. Hepp, R. Schmechel, and H. V. Seggern, Light emission from a polymer

transistor, Appl. Phys. Lett., 84 (2004)428.

[5] L.-L. Chua, J. Zaumseil, J.-F. Chang, E. C.-W. Ou, P. K.-H. Ho, H. Sirringhaus,

and R. H. Friend, General observation of n-type field-effect behaviour in organic semiconductors,

Nature, 434 (2005)194.

[6] Y. Kim, S. Chung, K. Cho, D. Harkin, W.‐Taek Hwang, D. Yoo Jae‐Keun, Kim W. Lee

Y. Song, H. Ahn, Y. Hong, H. Sirringhaus, K. Kang, T. Lee, Enhanced Charge Injection

Properties of Organic Field‐Effect Transistor by Molecular Implantation Doping, Adv. Mater., 31,

(2019) 1806697.

[7] 17.3% is organic solar cell efficiency record,

2018-08/ .

[8] J. Hou, O. Inganäs, R. H. Friend & F. Gao, Organic solar cells based on non-fullerene acceptors,

Nature Materials, 17 (2018) 119–128.

[9] C. Yan, S. Barlow, Z. Wang, H. Yan, A. K.-Y. Jen, S. R. Marder & X. Zhan, Non-fullerene

acceptors for organic solar cells, Nature Rev. Mat. 3, (2018) 18003.

[10] M. T. Khan, R. Bhargav, A. Kaur, S.K. Dhawan, S. Chand. Effect of cadmium sulphide

quantum dot processing and post thermal annealing on P3HT/PCBM photovoltaic device, Thin

Solid Films 519 (2010) 1007.

[11] M. T. Khan, A. Kaur, S K Dhawan and S. Chand, In-Situ growth of cadmium telluride

nanocrystals in poly(3-hexylthiophene) matrix for photovoltaic application, J. Appl. Phys 110

(2011) 044509.

[12] Haoliang Liu, Chuang Zhang, Hans Malissa, Matthew Groesbeck, Marzieh Kavand, Ryan

McLaughlin, Shirin Jamali, Jingjun Hao, Dali Sun, Royce A. Davidson, Leonard Wojcik, Joel S,

Organic-based magnon spintronics. Miller, Christoph Boehme & Z. Valy Vardeny, Nature

Materials, 17 (2018) 308–312.

[13] Haoliang Liu, Jingying Wang, Matthew Groesbeck, Xin Pan, Chuang Zhang and Z. Valy

Vardeny, Studies of spin related processes in fullerene C60 devices, J. Mater. Chem. C, 2018,6,


[13] Srijani Mallik, Stefan Mattauch, Manas Kumar Dalai, Thomas Brückel & Subhankar Bedanta

Effect of magnetic fullerene on magnetization reversal created at the Fe/C60 interface, Scientific

Reports, 8 (2018) 5515.

[14] Lidan Guo Xianrong Gu Xiangwei Zhu Xiangnan, Sun Recent Advances in Molecular

Spintronics: Multifunctional Spintronic Devices, Adv. Mat. (2019), 1805355,

[15] Shiheng Liang, Rugang Geng, Baishun Yang, Wenbo Zhao, Ram Chandra Subedi, Xiaoguang

Li, Xiufeng Han & Tho Duc Nguyen, Curvature-enhanced Spin-orbit Coupling and Spinterface

Effect in Fullerene-based Spin Valves, Scientific Reports, 6, (2016) 19461.

[16] Xianmin Zhang, Shigemi Mizukami, Takahide Kubota, Qinli Ma, Mikihiko Oogane, Hiroshi

Naganuma, Yasuo Ando & Terunobu Miyazaki, Observation of a large spin-dependent transport

length in organic spin valves at room temperature, Nat. Commun. 4 (2013) 1392.

[17] Z. G Yu, Spin-orbit coupling and its effects in organic solids, Phys. Rev. B 85 (2012) 115201.

[18] Roderick C. I. MacKenzie, Jarvist M. Frost, and Jenny Nelson, A numerical study of mobility

in thin films of fullerene derivatives, J. Chem. Phys. 132 (2010) 064904.

[19] Marco Gobbi Federico Golmar Roger Llopis Fèlix Casanova Luis E. Hueso, Room‐

Temperature Spin Transport in C60‐Based Spin Valves, Adv. Mater. 23 (2011) 1609.

[20] Mohd Taukeer Khan, V. Agrawal, Abdullah Almohammedi, V. Gupta, Effect of Traps on the

Charge Transport in Semiconducting Polymer PCDTBT, Solid State Electronics, 145 (2018) 49–53. 4)

[21] Mohd Taukeer Khan, and Abdullah Almohammedi, Effect of CdS nanocrystals on charge

transport mechanism in poly(3-hexylthiophene), J. App. Phy., 122 (2017) 075502.

[22] Mohd Taukeer Khan, Amarjeet Kaur, S K Dhawan and Suresh Chand, Hole transport

mechanism in organic/inorganic hybrid system based on in-situ grown CdTe nanocrystals in

poly(3-hexylthiophene), J. Appl. Phys. 109 (2011) 114509.

[23] Mohd Taukeer Khan, Manisha Bajpai, Amarjeet Kaur, S. K. Dhawan, Suresh Chand,

Electrical, optical and hole transport mechanism in thin films of poly(3-octylthiophene-co-3-

hexylthiophene): Synthesis and characterization, Synthetic Metals 160 (2010) 1530.

[24] Elements of Modern X-ray Physics, by J. Als-Nielsen and Des McMorrow, 2nd Edition wiley,(2001).

[25] Handbook of Thin Film Materials: Nanomaterials and Magnetic Thin Films by H. S. Nalwa,

Academic Press, (2002).

[26] Y.-L. Chan, Y.-J. Hung, C.-H. Wang, Y.-C. Lin, C.-Y. Chiu, Y.-L. Lai, H.-T. Chang, C.-H.

Lee, Y. J. Hsu, and D. H. Wei, Magnetic Response of an Ultrathin Cobalt Film in Contact with an

Organic Pentacene Layer, Physical Review Letters 104 (2010) 177204.

[27] A. A. Sidorenko, C. Pernechele, P. Lupo, M. Ghidini, M. Solzi, R. De Renzi, I.

Bergenti, P. Graziosi, V. Dediu, L. Hueso, and a. T. Hindmarch, Interface effects on an ultrathin

Co film in multilayers based on the organic semiconductor Alq3, App. Phy. Let. 97 (2010) 162509.

[28] I. Bergenti, a. Riminucci, E. Arisi, M. Murgia, M. Cavallini, M. Solzi, F. Casoli, and V.

Dediu, Magnetic properties of Cobalt thin films deposited on soft organic layers, Journal of

Magnetism and Magnetic Materials 316 (2007) e987.

[29] Y-J., L.Y.-L. Hsu, C-H. Chen, Y-H. Lin, H-Y. Chien, J-H.Wang, T-N. Lam, Y-L. Chan, D.

H. Wei, H-J. Lin and C-T. Chen, Self-Assembled Graphene/Carbon Nanotube Hybrid Films for

Supercapacitors, The J. Phy. Chem. Lett., 4 (2012) 310.

[30] J. S. Moodera and G. Mathon, Spin polarized tunneling in ferromagnetic junctions, J. Magn.

Magn. Mater., 200 (1999) 248–273.

[31] M. Julliμere, Tunneling between ferromagnetic films, Phys. Lett. 54, (1975) 225.