[1] F. Khan, S. Khan, S. Fahad, S. Faisal, S. Hussain, S. Ali, A. Ali, Effect of different levels of nitrogen
and phosphorus on the phenology and yield of maize varieties. Am J Plant Sci. 5 (2014) 2582–2590.
[2] D. Qiao, H. Liu, L. Yu, X. Bao, G.P. Simon, E. Petinakis, L. Chen, Preparation and characterization
of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydrate
polymers 147 (2016) 146-154.
[3] A. Shaviv, Advance in controlled-release fertilizers. Adv Agron. 71 (2001) 1–49.
[4] RD. Hangs, JD. Knight, KCJ. Van-Rees, Nitrogen accumulation by conifer seedlings and competitor
species from nitrogen-labeled controlled-release fertilizer. Soil Sci Soc Am J. 67 (2003) 300–308.
[5] D. Chen, HC. Suter, A. Islam, R. Edis, JR. Freney, Prospects of improving efficiency of fertilizer
nitrogen in Australian agriculture: a review of enhanced efficiency fertilizers. Aust J Soil Res. 46
(2008) 289–301.
[6] S. Sato, KT. Morgan, Nitrogen recovery and transformation from a surface or subsurface application
of controlled-release fertilizer on a sandy soil. J Plant Nutr. 31 (2008) 2214–2231.
[7] CR. Hyatt, RT. Venterea, CJ. Rosen, M. Mcnearney, ML. Wilson, MS. Dolan, Polymer-coated urea
maintains potato yields and reduces nitrous oxide emissions in a Minnesota loamy sand. Soil Sci Soc
Am J. 74 (2010) 419–428.
[8] ML. Wilson, CJ. Rosen, JF. Moncrief. Effects of polymer-coated urea on nitrate leaching and
nitrogen uptake by potato. J Environ Qual. 39 (2010) 492–499.
[9] R. Borges, V. Prevot, C. Forano, F. Wypych. Design and Kinetic Study of Sustainable Potential
Slow-Release Fertilizer Obtained by Mechanochemical Activation of Clay Minerals and Potassium
Monohydrogen Phosphate. Ind Eng Chem Res. 56 (2017) 708–716.
[10] WG. Cheng, S. Sudo, H. Tsuruta, K. Yagi, A. Hartley. Temporal and spatial variations in N2O
emissions from a Chinese cabbage field as a function of type of fertilizer and application. Nutr
Cycling Agroecosyst. 74 (2006) 147–155.
[11] J. Jingyan, H. Zhenghua, S. Wenjuan, H. Yao. Nitrous oxide emissions from Chinese cropland
fertilized with a range of slow release nitrogen compounds. Agric, Ecosyst Environ. 135 (2010) 216–225.
[12] YD. Noh, S. Komarneni, M. Park, Mineral-Based Slow Release Fertilizers: A Review. Korean J Soil
Sci Fert. 48 (2015) 1–7.
[13] Solihin, QW. Zhang, W. Tongamp, F. Saito. Mechanochemical route for synthesizing KMgPO4 and
NH4MgPO4 for application as slow-release fertilizers. Ind Eng Chem Res. 49 (2010) 2213–2216.
[14] Solihin, QW. Zhang, W. Tongamp, F. Saito. Mechanochemical synthesis of kaoline–KH2PO4 and
kaoline–NH4H2PO4 complexes for application as slow release fertilizer. Powder Technol. 212
(2011) 354–358.
[15] F. Mahdavi, SBA. Rashid, MK. Zusop. Intercalation of urea into kaolinite for preparation of
controlled release fertilizer. Chem Ind Chem Eng Q. 20 (2014) 207−213.
[16] W. Yuan, Solihin, QW. Zhang, J. Kano, F. Saito. Mechanochemical formation of K–Si–Ca–O
compound as a slow-release fertilizer. Powder Technol. 260 (2014) 22–26.
[17] R. Borges, SF. Brunatto, AA. Leita, GS. De Carvalho, F. Wypych. Solid-state mechanochemical
activation of clay minerals and soluble phosphate mixtures to obtain slow-release fertilizers. Clay
Miner. 50 (2015) 153–162.
[18] J. Ala’li. Evaluation and Beneficiation of Silica Sand and Kaolinitic Sandstone in South of Jordan.
Ph.D. Thesis, Nottingham University, U.K (2001).
[19] M. Barjous. Pre-processing Investigation of the Kaolin minerals of the Disi Sandstone Formation
from the Wadi Araba-Jordan. In: The Second Jordanian Mining Conference. Jordan (1997).
[20] L. Vaculíková, E. Plevová, S. Vallová, I Koutnik. Characterization and differentiation of kaolinites
from selected Czech deposits using infrared spectroscopy and differential thermal analysis. Acta
Geodyn. Geomater. 8 (2011) 59-67.
[21] JE. Gardolinski, LCM. Carrera, MP. Cantao, FJ. Wypych, Layered polymer-kaolinite
nanocomposites. J Mater Sci. 35 (2000) 3113–3119.
[22] J. Madejová, I. Kraus, D. Tunega, E. Šamajová. Fourier transform infrared spectroscopic
characterization of kaolin group minerals from the main Slovak deposits. Geol Carp Clays 1 (1997)3–10.
[23] MM. Mortland, Urea complexes with montmorillonite: an infrared absorption study. Clay Miner. 6
(1966) 143–156.
[24] É. Makó, J. Kristóf, E. Horváth, V. Vágvölgyi. Mechanochemical intercalation of low reactivity
kaolinite. Appl Clay Sci. 83–84 (2013) 24–31.
[25] M. Gargouri, C. Chtara, P. Sharrock, A, Nzihou, H. El Feki. Purification of an industrial fertilizer
(diammonium phosphate) using design of experiments. Int J Mater Eng. 4(6) (2014) 185–191.
[26] A. Periasamy, S. Muruganand, M. Palaniswamy. Vibrational studies of Na2SO4, K2SO4, NaHSO4
and KHSO4 crystals. Rasayan J Chem. 2 (2009) 981–986.
[27] NS. Meshram, NM. Gahane, RN. Kakde, BA. Shingade, KG. Rewatkar. Rapid growth of potassium
dihydrogen phosphate (KDP) single crystal by rotating crystal method. Int J Knowl Eng. 3 (2012)
175–177.
[28] RD. Sahnoun, K. Chaari, J. Bouaziz. Mechanochemical Synthesis of Kaolin-Potassium Phosphates
Complexes for Application as Slow-Release Fertilizer. Mediterr J Chem. 4 (2015) 156–162.