[1] H. Mraied, W. Cai, and A. A. Sagüés, “Corrosion resistance of Al and Al–Mn thin films,” Thin Solid
Film. Vol. 615, pp. 391-401, 2016. doi.org/10.1016/j.tsf.2016.07.057.
[2] R.W. Revie, and H.H. Uhlig, “Corrosion and Corrosion Control: An Introduction to Corrosion Science
and Engineering, fourth edition, Wiley-Interscience, 2008, [Online]. Available:
http://onlinelibrary.wiley.com/book/10.1002/9780470277270. [Accessed: July. 15, 2018].
[3] A.W. Momber, T. Marquardt, “Protective coatings for offshore wind energy devices (OWEAs),” J.
Coat. Technol. Res. Vol. 15, pp. 13–40, 2018. https://doi.org/10.1007/s11998-017-9979-5.
[4] A. López, R. Bayón, F. Pagano, A. Igartua, A. Arredondo, J.L. Arana, and J.J. González,
“Tribocorrosion behaviour of mooring high strength low alloy steels in synthetic seawater,” Wear Vol. 338-
339, pp. 1-10, 2015. https://doi.org/10.1016/j.wear.2015.05.004.
[5] G. A. El-Mahdy, and K.B. Kim, “AC impedance study on the atmospheric corrosion of aluminium
under periodic wet-dry conditions,” Electrochim. Acta. Vol. 49(12), pp. 1937-1948, 2004.
doi:10.1016/j.electacta.2003.12.022
[6] M. Navaser, and M. Atapour, “Effect of Friction Stir Processing on Pitting Corrosion and Intergranular
Attack of 7075 Aluminum Alloy.,” J. Mater. Sci. Technol. Vol. 33 (2), pp. 155-165, 2017. doi:
10.1016/j.jmst.2016.07.008
[7] M. de Bonfils-Lahovary, L. Laffont, and C. Blanc, “Characterization of intergranular corrosion defects
in a 2024 T351 aluminium alloy.” Corros. Sci. vol.119, pp. 60-67, 2017. doi:10.1016/j.corsci.2017.02.020
[8] C.N. Panagopoulos, and E.P. Georgiou, “Corrosion and wear of 6082 aluminium alloy,” Tribol. Int. vol.
42(6), pp. 886-889, 2009. doi.org/10.1016/j.triboint.2008.12.002
[9] A. López-Ortega, R. Bayón, J.L. Arana, A. Arredondo and A. Igartua, “Influence of temperature on the
corrosion and tribocorrosion behaviour of high-strength low alloy steels used in offshore applications,”
Tribol. Int. vol. 121, pp. 341–352, 2018. https://doi.org/10.1016/j.triboint.2018.01.049.
[10] H. Li, Z. Ke, J. Li, L. Xue, and Y. Yan, “An effective low-temperature strategy for sealing plasma
sprayed Al2O3-based coatings,” Journal of the European Ceramic Society 38, pp.1871–1877, 2018.
http://dx.doi.org/10.1016/j.jeurceramsoc.2017.09.051
[11] P. Wang and J. P. Li, “The formation mechanism of the composited ceramic coating with thermal
protection feature on an Al-12Si piston alloy via a modified PEO process,” J. Alloys Compd. Vol. 682, pp.
357–365, 2016.
[12] J. Yamabe, S. Matsuoka and Y. Murakami, “Surface coating with a high resistance to hydrogen entry
under high-pressure hydrogen-gas environment,” Int. J. Hydrogen Energy vol. 38, pp. 10141–10154, 2013.
[13] R. Kromer, S. Costil, C. Verdy, S. Gojon, and H. Liao, “Laser surface texturing to enhance adhesion
bond strength of spray coatings – Cold spraying, wire-arc spraying, and atmospheric plasma spraying,”
Surf. Coat. Technol. Vol. 352, pp. 642–653, 2018. doi.org/10.1016/j.surfcoat.2017.05.007
[14] K. Yang, J. Rong, C.G. Liu, H.Y. Zhao, S.Y. Tao and C.X. Ding, “Study on erosion–wear behavior
and mechanism of plasma-sprayed alumina-based coatings by a novel slurry injection method,” Tribo. Int.
vol. 93, pp.29–35, 2016.
[15] H. Singh, and B. S. Sidhu, “Use of plasma spray technology for deposition of high temperature
oxidation/corrosion resistant coatings-a review,” Mater. Corros. VOL. 58(2), PP. 92-102, 2007. DOI:
10.1002/maco.200603985
[16] S. Kumar, A. Kumar, D. Kumar, and L. Jain, “Thermally sprayed alumina and ceria-doped-alumina
coatings on AZ91 Mg alloy,” Surf. Coat. Tech. vol. 332, pp. 533-541, 2007.
doi:10.1016/j.surfcoat.2017.05.09
[17] D. Thirumalaikumarasamy, K. Shanmugam, and V. Balasubramanian, “Corrosion performances of
atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment,”
J. Asian Ceram. Soc. vol. 2(4), pp. 403-415, 2014. doi.org/10.1016/j.jascer.2014.08.006
[18] T. Q. Nakamura, G. Berndt, and C. Christopher "Effects of Pores on Mechanical Properties of Plasma-
Sprayed Ceramic Coatings," Journal of the American Ceramic Society, vol 83(3), pp. 578-584, 2000.
[19] S.H. Yao, “Comparative study on wear performance of traditional and nanostructured Al2O3-13 wt.%
TiO2 air plasma spray coatings,” Ceramics- Silikáty vol. 59, pp. 59–63, 2015.
[20] S. Beauvais, and V. Guipont, "Process-microstructure-property relationships in controlled atmosphere
plasma spraying of ceramics," Surf. Coat. Technol., vol. 183(2-3), pp. 204-11, 2004.
[21] R. G. Song, and C. Wang,"Microstructure and properties of Al2O3/TiO2 nanostructured ceramic
composite coatings prepared by plasma spraying," J. Alloys Compound., vol. 544(0), pp. 13-18, 2012.
[22] O. E.Abdel-Salam, M. A. Shoeib, and H. Ashour Elkilany, “Characterization of the hard anodizing
layers formed on 2014-T3 Al alloy, in sulphuric acid electrolyte containing sodium lignin sulphonate,”
Egyptian Journal of Petroleum, Article in Press, https://doi.org/10.1016/j.ejpe.2017.07.014
[23] W. Tabakoff, and V. Shanov. “Erosion rate testing at high temp. for turbo machinery use.” Surf. Coat.
Technol. Vol. 76 – 77, Part I, pp. 75 –80, 1995.
[24] Q. Wang, C. S. Ramachandran, G. M. Smith, S. Sampath, “Sliding wear behavior of air plasma sprayed
Al2O3 coatings sealed with aluminum phosphate,” Tribo. Int., vol. 116, pp. 431–439, 2017.
http://dx.doi.org/10.1016/j.triboint.2017.08.002
[25] M. Daroonparvar, M. Yajid, N. Yusof, and H. Rad, “Fabrication and properties of triplex
NiCrAlY/nano Al2O313%TiO2/nano TiO2 coatings on a magnesium alloy by atmospheric plasma
spraying method,” J. Alloys Compd. Vo. 645, pp. 450–466, 2015.
[26] E. Colonetti, E. Kammer, and A. Junior, “Chemically-bonded phosphate ceramics obtained from
aluminum anodizing waste for use as coatings,” Ceram. Int. vol. 40, pp. 14431–14438, 2014.
[27] C. Sujaya, H. Shashikala, G. Umesh and A. C. Hegde, (2012). "Hardness and electrochemical
behaviour of ceramic coatings on Inconel." J. Electrochem. Sci. Eng. Vol. 2(1), pp. 19-31. 2012.
[28] M. Thammachart, “Corrosion Mechanisms of Chemically Bonded Composite Sol-Gel (CB-CSG)
Al2O3 Coated Systems in Aqueous Environment,” Edinburgh, Heriot-Watt University, PhD: 297, 2005.
[29] H. Lee, J. K. Singh, and M. A. Ismail, “An effective and novel pore sealing agent to enhance the
corrosion resistance performance of Al coating in artificial ocean water, Sci Rep. 2017; 7: 41935. Published
online 2017 Feb 3. doi: 10.1038/srep41935
[30] Y. Shi, B. Yang and P. K. Liaw, “Corrosion-Resistant High-Entropy Alloys: A Review,” Metals, vol.
7, pp. 43-61, 2017. doi:10.3390/met7020043.
[31] A. A. Olajire, “Corrosion inhibition of offshore oil and gas production facilities using organic
compound inhibitors - A review,” J. Mol. Liq. Vol. 248, pp. 775-808, 2017.
doi:10.1016/j.molliq.2017.10.097
[32] G. A. Zhang, and L. Y. Xu, "Investigation of erosion-corrosion of 3003 aluminium alloy in ethylene
glycol-water solution by impingement jet system," Corrosion Science, vol. 51(2), pp. 283-290, 2009.
[33] A. Costa, and G. Macedonio, “Viscous heating in fluids with temperature-dependent viscosity:
implications form agma flows,” Nonlinear Processes in Geophysics, vol. (20), pp. 101-111, 2003.
[34] J.A. Curran, and T.W. Clyne, “Thermo-physical properties of plasma electrolytic oxide coatings on
aluminium,” Surf. Coat. Technol. Vol.199(2-3), pp. 168-176, 2005. doi:10.1016/j.surfcoat.2004.09.037.
[35] A. Nandi, and I. Lufman, "Erosion Related Changes to Physicochemical Properties of Ultisols
Distributed on Calcareous Sedimentary Rocks." Journal of Sustainable Development, vol. 5(8), pp.52-68,2012.