[1] R. Saidur, K. Y. Leong, H. A. Mohammad, A review on applications and challenges of
nanofluids, Renew. Sust. Energ. Rev. 15 (3) (2011) 1646-1668.
[2] N. A. C. Sidik, M. N. A. W. M. Yazid, R. Mamat, A review on the application of nanofluids
in vehicle engine cooling system, Int. J. Heat Mass Transf. 68 (2015) 85-90.
[3] M. Kole, T. K. Dey, Viscosity of alumina nanoparticles dispersed in car engine coolant, Exp.
Therm. Fluid Sci. 34 (2010) 677-683.
[4] W. Yu, H. Xie, L. Chen, Y. Li, Investigation of thermal conductivity and viscosity of
ethylene glycol based ZnO nanofluid, Thermochimic Acta 491 (2009) 92-96.
[5] M. Jarahnejad, E. B. Haghighi, M. Saleemi, N. Nikkam, R. Khodabandeh, B. Palm, M. S.
Toprak, M. Muhammed, Experimental investigation on viscosity of water-based Al2O3 and
TiO2 nanofluids, Rheol. Acta 54 (5) (2015) 411-422.
[6] S. V. Ravikumar, J. M. Jha, K. Haldar, S. K. Pal, S. Chakraborty, Surfactant-Based Cu–
Water Nanofluid Spray for Heat Transfer Enhancement of High Temperature Steel Surface,
J. Heat Transf. 137 (5) (2015) 051504.
[7] T. P. Teng, Y. B. Fang, Y. C. Hsu, L. Lin, Evaluating stability of aqueous multiwalled carbon
nanotube nanofluids by using different stabilizers, J. Nanomater. 2014 (2014) 203.
[8] K. S. Suganthi, K. S. Rajan, A formulation strategy for preparation of ZnO–propylene
glycol–water nanofluids with improved transport properties, Int. J. Heat Mass Transf. 71
(2014) 653-663.
[9] D. Wen, Y. Ding, Formulation of nanofluids for natural convective heat transfer applications,
Int. J. Heat Fluid Flow 26 (6) (2005) 855-864.
[10] D. Wen, Y. Ding, Natural convective heat transfer of suspensions of titanium dioxide
nanoparticles (nanofluids), IEEE Trans. Nanotechnol. 5 (3) (2006) 220-227.
[11] C. H. Li, G. P. Peterson, Experimental studies of natural convection heat transfer of
Al2O3/DI water nanoparticle suspensions (nanofluids), Adv. Mech. Eng. 2 (2010) 742739.
[12] R. Ni, S. Q. Zhou, K. Q. Xia, An experimental investigation of turbulent thermal convection
in water-based alumina nanofluid, Physics of Fluids, 23 (2) (2011) 022005.
[13] K. Kouloulias, A. Sergis, Y. Hardalupas, Sedimentation in nanofluids during a natural
convection experiment, Int. J. Heat Mass Transf. 101 (2016) 1193-1203.
[14] E. E. S. Michaelides, Nanofluidics: thermodynamic and transport properties, Springer, 2014.
[15] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a twodimensional
enclosure utilizing nanofluids, Int. J. Heat Mass Transf. 46 (19) (2003) 3639-3653.
[16] C. J. Ho, W. K. Liu, Y. S. Chang, C. C. Lin, Natural convection heat transfer of aluminawater
nanofluid in vertical square enclosures: an experimental study, Int. J. Therm. Sci. 49
(8) (2010) 1345-1353.
[17] P. I. Frank, P. D. David, L. E. Theodore, S. L. Adrienne, Foundations of Heat Transfer, 6th
ed., Asia: John Wiley & Sons Inc, 2013.
[18] B. C. Pak, Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with
submicron metallic oxide particles, Exp. Heat Transf. 11 (2) (1998) 151-170.
[19] K. S. Suganthi, S. Manikandan, N. Anusha, K. S. Rajan, Cerium oxide–ethylene glycol
nanofluids with improved transport properties: preparation and elucidation of mechanism, J.
Taiwan Inst. Chem. Eng. 49 (2015) 183-191.
[20] G. Christensen, H. Younes, H. Hong, P. Smith, Effects of solvent hydrogen bonding,
viscosity, and polarity on the dispersion and alignment of nanofluids containing Fe2O3
nanoparticles, J. Appl. Phys. 118 (21) (2015) 214302.
[21] R. Sadeghi, S. G. Etemad, E. Keshavarzi, M. Haghshenasfard, Investigation of alumina
nanofluid stability by UV–vis spectrum, Microfluid. Nanofluidics 18 (5-6) (2015) 1023-1030.
[22] A. Amrollahi, A. A. Hamidi, A. M. Rashidi, The effects of temperature, volume fraction and
vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon
nanofluid), Nanotechnology 19 (2008).
[23] D. Rouxel, R. Hadji, B. Vincent, Y. Fort, Effect of ultrasonication and dispersion stability
on the cluster size of alumina nanoscale particles in aqueous solutions, Ultrason. Sonochem.
18 (1) (2011) 382-388.
[24] Y. Y. Song, H. K. D. H. Bhadeshia, and D. W. Suh, Stability of stainless-steel nanoparticle
and water mixtures, Powder Technol. 272 (2015) 34-44.
[25] S. A. Adio, M. Sharifpur, J. P. Meyer, Influence of ultrasonication energy on the dispersion
consistency of Al2O3–glycerol nanofluid based on viscosity data, and model development
for the required ultrasonication energy density, J. Exp. Nanosci. 11 (8) (2016) 630-649.
[26] A. Ijam, R. Saidur, P. Ganesan, A. M. Golsheikh, Stability, thermo-physical properties, and
electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid,
Int. J. Heat Mass Transf. 87 (2015) 92-103.
[27] V. Kumaresan, R. Velraj, Experimental investigation of the thermo-physical properties of
water–ethylene glycol mixture-based CNT nanofluids, Thermochim. Acta 545 (2012) 180-186.
[28] X. F. Li, X. J. Wang, Z. Z. Li, Grashof number effects on nanofluids in natural convection
heat transfer, Appl. Mech. Mater. 468 (2014) 43-48.
[29] L. Snoussi, R. Chouikh, N. Ouerfelli, A. Guizani, Numerical simulation of heat transfer
enhancement for natural convection in a cubical enclosure filled with Al2O3/water and
Ag/water nanofluids, Phys. Chem. Liq. 4 (6) (2016) 703-716.
[30] M. S. Jaman, S. Islam, S. Saha, M. N. Hasan, M. Q. Islam, Effect of Reynolds and Grashof
numbers on mixed convection inside a lid-driven square cavity filled with water-Al 2 O 3
nanofluid, presented at AIP Conference Proceedings (vol. 1754, no. 1, p. 050050), July 12 (2016).
[31] R. Choudhary, D. Khurana, A. Kumar, S. Subudhi, Stability analysis of Al2O3/water
nanofluids, J. Exp. Nanosci. 12 (1) (2017) 140-151.