[1] Abbas. S., Benchohra. M. and Graef. J. R. (2021). Osillation and nonoscillation results for the Caputo Fractional q-Differential Equations and Inclusions,
Journal of Mathematical Sciences, Vol. 258, No. 5, pp. 577-593.
[2] Agarwal, R.P., Bohner, M., Grace, S.R. and O’Regan, D. (2005). Discrete Oscillation Theory, Hindawi Publishing Corporation: New York, NY, USA.
[3] Boudjerida, A., Seba, D., Meskine, N. et al. Oscillation of non-instantaneous impulsive hybrid-fractional delay differential inclusions with Hilfer-Katugampola
derivative. J. Appl. Math. Comput. (2025). https://doi.org/10.1007/s12190-025-02541-w
[4] Cui, B., Lalli, B.S. & Yu, Y. Forced oscillations of hyperbolic differential
equations with deviating arguments. Acta Mathematicae Applicatae Sinica 11,
369–377 (1995). https://doi.org/10.1007/BF02007175
[5] Chatzarakis GE, Nagajothi N, Deepa M, Sadhasivam V. On the Oscillatory
Behavior of a Class of Mixed Fractional-Order Nonlinear Differential Equations.
Symmetry. 2025; 17(3):446. https://doi.org/10.3390/sym17030446
[6] Chatzarakis, G.E., Logaarasi, K. Forced oscillation of impulsive fractional partial differential equations. Partial Differential Equations in Applied Mathematics Volume 7, June 2023, 100478. https://doi.org/10.1016/j.padiff.2022.100478
[7] L. D. Du Oscillation of a quasilinear impulsive delay parabolic equation with
two different boundary conditions, J. Math. Anal. Appl. 307 (2005) 524–532.
[8] L.H. Erbe, Q. Kong, B.G. Zhang, Oscillation Theory for Functional Differential
Equations, Marcel Dekker, New York, 1995.
[9] Feng Q., Meng F., Oscillation of solutions to nonlinear forced fractional differential equations, Electr. J. Diff. Equ., 2013, 169: 1-10.
[10] Feng, Q. and Liu, A. (2019) Oscillation for a Class of Fractional Differential Equation. Journal of Applied Mathematics and Physics, 7, 1429-1439. doi:
10.4236/jamp.2019.77096.
[11] X.L. Fu and L.Q. Zhang, Forced oscillation for certain nonlinear delay parabolic
equations, J. Partial Diffi Eqs. 8, 82-88, (1995).
[12] A. Halanay, Volume 23: Differential Equations: Stability, Oscillations, Time
Lags, Mathematics in Science and Engineering Book series, Pages ii-x, 1-528
(1966)
[13] J. Jaro? T. Kusano, N. Yoshida Oscillation properties of solutions of a class of
nonlinear parabolic equations, Journal of Computational and Applied Mathematics 146 (2002) 277–284
[14] K. Kreith, T. Kusano, N. Yoshida Oscillation properties of nonlinear hyperbolic
equations SIAM J. Math. Anal., 15 (1984), pp. 570-578
[15] Kong, H. and Xu, R. Forced oscillation of fractional partial differential equations with damping term, Fractional Differential Calculus Volume 7, Number 2
(2017), 325-338 doi:10.7153/fdc-2017-07-15
[16] Kusano T. and Naito M., Oscillation criteria for a class of perturbed schrôdinger
equations, Canad. Math. Bull. Vol. 25 (1) (1982).
[17] B.S. Lalli, Y.H. Yu, B.T. Cui Oscillations of certain partial differential equations
with deviating arguments Bull. Austral. Math. Soc., 46 (1992), pp. 373-380
[18] B.S. Lalli, Y.H. Yu, B.T. Cui Oscillations of hyperbolic differential equations
with functional arguments Applied Mathematics and Computation 53:97-110
(1993). https://doi.org/10.1016/0096-3003(93)90095-V
[19] B.S. Lalli, Y.H. Yu, B.T. Cui, Forced oscillations of hyperbolic differential
equations with deviating arguments, Indian J. Pure Appl. Math. 25 (1994)
387-397.
[20] B.S. Lalli, Y.H. Yu, B.T. Cui Forced oscillations of the hyperbolic differential
equations with deviating arguments Indian J. Pure Appl. Math., 25 (4) (1995),
pp. 387-397
[21] Li, Wei Nian, Sheng, Weihong. "Oscillation properties for solutions of a kind of
partial fractional differential equations with damping term." Journal of Nonlinear Sciences and Applications, 9, no. 4 (2016): 1600–1608
[22] Ma Q-X., Liu K-Y., Liu A-P., Forced oscillation of fractional partial differential
equations with damping term, J. of Math. (PRC) Vol. 39 ( 2019 ) No. 1
[23] D.P. Mishev Oscillatory properties of the solutions of hyperbolic differential
equations with “maximum” Hiroshima Math. J., 16 (1986), pp. 77-83
[24] Pagan G. An oscillation theorem for characteristic initial value problems in
linear hyperbolic equations, Proceedings of the Royal Society of Edinburgh, 77
A, 265-271, 1977
[25] A. Raheem, Md. Maqbul, Oscillation criteria for impulsive partial fractional differential equations, Comput. Math. Appl. 73(8) (2017) 1781-1788,
https://doi.org/10.1016/j.camwa.2017.02.016.
[26] Y. Shoukaku Oscillation of the solutions of parabolic equations with
nonlinear neutral terms J. Math. Anal. Appl. 326 (2007) 556–569.
doi:10.1016/j.jmaa.2005.09.048
[27] Tanaka, S. Yoshida, N. Oscillations of solutions to parabolic equations with
deviating arguments, Tamkang Journal of Mathematics Volume 28, Number 3,
Autumn 1997.
[28] P.G. Wang Forced oscillation of a class of delay hyperbolic equations boundary
value problem Appl. Math. Comput., 103 (1) (1999), pp. 15-25
[29] P.G. Wang, W.G. Ge Oscillations of a class of functional parabolic differential
equations Appl. Math. Lett., 13 (7) (2000), pp. 85-91
[30] Wang, P. G., On the oscillation of solutions of parabolic partial functional differential equations. Mathematica Slovaca 51.4 (2001): 449-458.
http://eudml.org/doc/32168.
[31] P.G. Wang, W.G. Ge Oscillation of a class of hyperbolic equations Appl. Math.
Comput., 116 (1) (2000), pp. 101-110
[32] P.G. Wang, Y.H. Yu Oscillation of a class of hyperbolic boundary value problem
Appl. Math. Lett., 10 (7) (1999), pp. 91-98
[33] P. Wang, Y. Wu, L. Caccetta, Oscillation criteria for boundary value problems
of high-order partial functional differential equations J. Comput. Appl. Math.,
206 (1) (2007), pp. 567-577
[34] P.G. Wang, J.L. Zhao, W.G. Ge Oscillation criteria of nonlinear hyperbolic
equations with functional argument Comput. Math. Appl., 40 (5) (2000), pp.
513-521.
[35] Xu, D., Meng, F. Oscillation criteria of certain fractional partial differential
equations. Adv Differ Equ 2019, 460 (2019). https://doi.org/10.1186/s13662-019-2391-y
[36] Yoshida, N., Oscillation of nonlinear parabolic equation with functional arguments, Hiroshima Math. J., 16(1986), 305–314.
[37] Yoshida, N., Forced oscillations of solutions of parabolic equations, Bull. Austral. Math. Soc., 36 (1987),289–294.
[38] Norio Yoshida, An oscillation theorem for characteristic initial value problems
for nonlinear hyperbolic equations, Proc. Amer. Math. Soc., 76 (1979), 95–100