مجلة الجامعة الإسلامية للعلوم التطبيقية

Thermal Properties and Phase Formation in Zn-Modified Pb–Sn Alloys

Ali Alnakhlani 

الكلمات مفتاحية: DSC; Kissinger; Activation energy; Crystallization; Thermal behavior.

التخصص العام: Science

التخصص الدقيق: Advanced Materials Science

https://doi.org/10.63070/jesc.2025.027; Received 16 September 2025; Revised 06 October 2025; Accepted 11 October 2025; Available online 12 October 2025.
DownloadPDF
الملخص

This study investigates the influence of a 2% zinc (Zn) addition on the thermal properties and crystallization kinetics of a Pb-5Sn solder alloy to understand its impact on processing characteristics. Non-isothermal differential scanning calorimetry (DSC) was employed to analyze the melting and crystallization behavior of both the base Pb-5Sn and the modified Pb-5Sn-2Zn alloys at heating and cooling rates of 5, 10, 15, and 25 °C·min?¹. The Kissinger method was applied to the crystallization peak data to determine the activation energy (E?) for the process. The results revealed a significant decrease in the activation energy for crystallization upon the addition of zinc, from 103.54 kJ/mol for the base Pb-5Sn alloy to 57.93 kJ/mol for the Pb-5Sn-2Zn alloy. Furthermore, the crystallization peak temperatures for the Zn-modified alloy were consistently lower across all cooling rates, indicating an increased propensity for crystallization. This substantial reduction in the energy barrier suggests that zinc atoms act as effective heterogeneous nucleation sites, thereby facilitating the transition from the liquid to the solid phase. These findings demonstrate that minor Zn alloying can significantly alter the phase transformation kinetics, providing a practical route for tailoring the solidification behavior and optimizing the thermal processing for Pb-Sn alloys.

مراجع

 

[1] Abtew, M., & Selvaduray, G. (2000). Lead-free solders in microelectronics. Materials Science   

      and Engineering: R: Reports, 27(5–6), 95–141.

      https://doi.org/10.1016/S0927-796X(00)00010-3

[2] Zhang, N. X., Kawasaki, M., Huang, Y., & Langdon, T. G. (2021). An examination of  

      microstructural evolution in a Pb–Sn eutectic alloy processed by high-pressure torsion and  

      subsequent self-annealing. Materials Science and Engineering: A, 802, 140653.        

      https://doi.org/10.1016/j.msea.2020.140653

[3]   Xu KK, Zhang L, Gao LL, Jiang N, Zhang L, Zhong SJ. Review of microstructure and properties of low temperature lead-free solder in electronic packaging. Sci Technol Adv Mater. 2020 Oct 19;21(1):689-711. https://doi.org/10.1080/14686996.2020.1824255

[4]   Cheng, S., Huang, C.-M., & Pecht, M. (2017). A review of lead-free solders for electronics applications. Microelectronics Reliability, 75, 77–95. https://doi.org/10.1016/j.microrel.2017.06.016.

[5]    Anousheh, A., & Soleimani, M. (2025). Advances in microstructural evolution and reliability-driven mechanical and corrosion properties of lead-free SAC solder alloys. Materials & Design, 258, 114510. https://doi.org/10.1016/j.matdes.2025.114510

[6]   B. S. Sobral et al., “Effects of Zn Addition on Dendritic/Cellular Growth, Phase Formation, and Hardness of a Sn–3.5?wt% Ag Solder Alloy,” Advanced Engineering Materials, vol. 25, no. 6, pp. 2201270–2201270, Nov. 2022, 0.1002/adem.202201270

[7]   Dybe?, A., Pstru?, J. New Solder Based on the Sn-Zn Eutectic with Addition of Ag, Al, and Li. J. of Materi Eng and Perform 32, 5710–5722 (2023). https://doi.org/10.1007/s11665-023-08103-0

[8]   El-Taher, A.M., Mansour, S.A. & Lotfy, I.H. Robust effects of In, Fe, and Co additions on microstructures, thermal, and mechanical properties of hypoeutectic Sn–Zn-based lead-free solder alloy. J Mater Sci: Mater Electron 34, 599 (2023). https://doi.org/10.1007/s10854-023-09969-5

[9]   Kotadia, Hiren R. and Rahnama, Alireza and Tang, Fengzai and Ahuir Torres, JI and West, Geoff and Das, Amit and Mannan, S.H., Identification of the Role of Zinc in Sn–Cu Solder and Interfacial Intermetallic Growth Through Experimental Results and Phase-Field Simulations. doi.org/10.2139/ssrn.5090471

[10]    Kang, Y., Choi, J.-J., Kim, D.-G., & Shim, H.-W. (2022). The Effect of Bi and Zn Additives on Sn-Ag-Cu Lead-Free Solder Alloys for Ag Reduction. Metals, 12(8), 1245. https://doi.org/10.3390/met12081245  

[11]     El-Daly, A. A., & Abdel-Daiem, A. M. (2003). Effect of zinc-addition and temperature on the work-hardening characteristics of Pb–Sn eutectic alloy. Physica Status Solidi (a), 198(1). https://doi.org/10.1002/pssa.200306584

[12]                   Chria?te?ov?, J., & O?vold, M. (2008). Properties of solders with low melting point. Journal of Alloys and Compounds, 457(1–2), 323–328. https://doi.org/10.1016/j.jallcom.2007.03.062

[13]                   de Castro, W. B., Maia, M. L., Kiminami, C. S., & Bolfarini, C. (2001). Microstructure of unde rcooled Pb–Sn alloys. Materials Research, 4(2), 83–86. https://doi.org/10.1590/S1516-14392001000200007

[14]                    Alnakhlani, A., Hassan, B., Muhammad, A., & Al-Hajji, M. A. (2017). Effect of heating rates and Zn-addition on the thermal properties of Pb–Sn alloy. International Journal of Advanced Research, 5(3), 20–27. https://doi.org/10.21474/IJAR01/3478

[15]                   Yoon, S. W., Soh, J. R., Lee, H. M., & Lee, B.-J. (1997). Thermodynamics-aided alloy design and evaluation of Pb-free solder, Sn–Bi–In–Zn system. Acta Materialia, 45(3), 951–960. https://doi.org/10.1016/S1359-6454(96)00253-4

[16]                    Najib, A. M., Abdullah, M. Z., Saad, A. A., Che Ani, F., & Samsudin, Z. (2019). Soldering characteristics and thermo-mechanical properties of Pb-free solder paste for reflow soldering. Journal of Advanced Manufacturing Technology (JAMT), 13(2), 45–56. https://jamt.utem.edu.my/jamt/article/view/5507

[17]                   Sari I, Ahmadein M, Ataya S, Hachani L, Zaidat K, Alrasheedi N, Wu M, Kharicha A. Prediction of the Secondary Arms Spacing Based on Dendrite Tip Kinetics and Cooling Rate. Materials (Basel). 2024 Feb 13;17(4):865. https://doi.org/10.3390/ma17040865

[18]                   Krupi?ski, M. (2021). Crystallization kinetics and microstructural analysis of lanthanum-modified zinc alloys. Journal of Alloys and Compounds, 890, 161784. https://doi.org/10.1016/j.jallcom.2021.161784

[19]                   Kissinger, H. E. (1956). Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57(4), 217–221. https://doi.org/10.6028/jres.057.026 

[20]                    Chen, K., Yang, H. M., Gao, J. S., Li, X. L., Yu, C. G., Ma, G. X., & Yuan, X. (2016). Non-isothermal crystallization kinetics of Mg60Zn30Ti5Si5 amorphous alloy prepared by mechanical alloying. Journal of Alloys and Compounds, 687, 174–178. https://doi.org/10.1016/j.jallcom.2016.06.107

[21]                    Krupi?ski, M., Labisz, K., Ta?ski, T., Krupi?ska, B., Kr?l, M., & Polok-Rubiniec, M. (2016). Influence of Mg addition on crystallisation kinetics and structure of the Zn–Al–Cu alloy. Archives of Metallurgy and Materials, 61(2), 785–790. https://doi.org/10.1515/amm-2016-0132]

[22]                   Pierwo?a, A., Lelito, J., Krawiec, H., Szucki, M., Gondek, ?., Kozie?, T., & Babilas, R. (2024). Non-Isothermal Analysis of the Crystallization Kinetics of Amorphous Mg72Zn27Pt1 and Mg72Zn27Ag1 Alloys. Materials, 17(2), 408. https://doi.org/10.3390/ma17020408

[23] Vyazovkin, S. (2020). Kissinger Method in Kinetics of Materials: Things to Beware and Be Aware of. Molecules, 25(12), 2813. https://doi.org/10.3390/molecules25122813

[24]   Farjas, J., & Roura, P. (2014). Exact analytical solution for the Kissinger equation: Determination of the peak temperature and general properties of thermally activated transformations. Thermochimica acta, 598, 51-58. https://doi.org/10.1016/j.tca.2014.10.024