مجلة الجامعة الإسلامية للعلوم التطبيقية

On eJU-Algebras: An Extension of JU-Algebras

Azeem Haider, Muhammad Imran Qureshi, Rimsha Jamil, Abdul Mueed

الكلمات مفتاحية: eJU-algebras; Minimals; eJU-subalgebras; eJU-ideals.

التخصص العام: Science

التخصص الدقيق: Algebra

https://doi.org/10.63070/jesc.2025.023 ; Received 18 July 2025; Revised 16 September 2025; Accepted 24 September 2025; Available online 12 October 2025.
DownloadPDF
الملخص

This article introduces a class of algebraic structures, called eJU-algebras, as a natural extension of JU-algebras using structural hypotheses. The extension arises by replacing classical notion of a constant unit element in JU-algebras with a framework based on non-empty subsets, leading to a broader and more flexible algebraic model. We investigate fundamental properties of eJU-algebras and establish their theoretical foundation by deriving them from traditional JU-algebras. This extension not only enhances the structural richness of JU-algebras but also opens new directions for the development of algebraic systems beyond conventional constraints.

مراجع

 

 

[1]     M. Panteki, “The mathematical background of George Boole’s mathematical analysis of logic,” A Boole Anthology: Recent and Classical Studies in the Logic of George Boole, vol. 1847, pp. 167–212, 2000.

[2]     Y. Imai and I. K, “On axiom systems of proportional calculi,” Preceedings of the Japan Academy, vol. 42, pp. 19–22, 1966.

[3]     I. K, “An algebra related with a propositional calculus,” Preceedings of the Japan Academy, vol. 42, pp. 26–29, 1966.

[4]     Q. P. Hu and X. Li, “On BCH-algebras,” Math. Sem. Notes Kobe Univ., vol. 11, pp. 313–320, 1983.

[5]     Y. Komori, “The class of bcc-algebras is not a variety,” Math. Japonica, vol. 29, pp. 391–394, 1984.

[6]     W. A. Dudek, “On proper bcc-algebras,” Bulletin of the Institute of Mathematics Academic Science, vol. 20, pp. 137–150, 1992.

[7]     Y. B. Jun, E. H. Roh, and H. S. Kim, “On BH algebras,” International society of Mathematical sciences, pp. 347–354, 1998.

[8]     M. A. Chaudhry, A. Fahad, Y. Rao, M. I. Qureshi, and S. Gulzar, “Branchwise solid general- ized bch-algebras,” AIMS Mathematics, vol. 5, no. 3, pp. 2424–2432, 2020.

[9]     M. A. Chaudhry, M. I. Qureshi, A. Fahad, and M. S. Bashir, “Isomorphism theorems in generalized d-algebras,” Journal of Prime Research in Mathematics, vol. 17, no. 2, pp. 149– 158, 2022.

[10]     M. A. Chaudhry, A. Fahad, M. I. Qureshi, and U. Riasat, “Some results about week UP- algebras,” Journal of Mathematics, vol. 2022, pp. 1–6, 2022.

[11]     W. Rump, “L-algebras and three main non-classical logics,” Annals of Pure and Applied Logic, vol. 173, no. 7, p. 103121, 2022.


[12]     A. Radfar, A. Rezaei, A. Saeid, and L. Liu, “Extensions of bck-algebras,” Cogent Mathematics, vol. 3, no. 1, p. 1265297, 2016.

[13]     C. Prabpayak and U. Leerawat, “On ideals and congruences in ku-algebras,” Scientia Magna, vol. 5, no. 1, pp. 54–57, 2009.

[14]     M. A. Ansari, A. Haider, and A. N. Koam, “On ju-algebras and p-closure ideals,” International Journal of Mathematics and Computer Science, vol. 15, no. 1, pp. 135–154, 2020.

[15]     D. A. Romano, “A few comments and some new results on ju-algebras,” Open Journal of Mathematical Sciences, vol. 4, no. 1, pp. 110–117, 2020.

[16]     M. A. Ansari, “Rough set theory applied to JU-algebras,” International Journal of Mathematics and Computer Science, vol. 16, pp. 1371–1384, 2021.

[17]     A. Haider, “On a soft quotient structure over JU-algebras,” Int. J. Anal. Appl., vol. 23, p. 56, 2025.

[18]     A. H. Hakami, M. A. Ansari, and A. Haider, “On some graphs based on the ideals of JU- algebras,” Int. J. Anal. Appl., vol. 22, p. 1, 2024.

[19]     A. Satirad, R. Chinram, and A. Iampan, “Four new concepts of extensions of KU/UP-algebras, ”Missouri Journal of Mathematical Sciences, vol. 32, no. 2, pp. 138–157, 2020.