Potentiometric and thermodynamic studies of N, N'-bis(4-hydroxyacetophenone) ethylenediamine and its Cu2+, Ni2+, Co2+, Fe3+, and Mn2+ complexes

Aly A. A. Soliman, Marguerite A. Wassef , Hoda A. Bayoumi

Keywords: Potentiometric Titrations – Stability Constants – Complexes – Schiff bases.

Studying the stability constants of metal complexes offers significant insights into their applications in analytical chemistry, pharmaceuticals, catalysis, environmental science, and material science. The protonation constants of N, N'-bis(4-hydroxyacetophenone) ethylenediamine (BHAEN) and the stability constants of a number of transition metal complexes have been studied potentiometrically at 20, 25, 30 and 40oC, in water solution at 0.1 M ionic strength (KNO3), using the mole ratios (1:1) and (2:1), (L:M), where M = Cu2+, Ni2+, Co2+ , Fe3+,  and Mn2+. The calculations are performed by operating the computer program SUPERQUAD. From the values of the stability constants of the complexes at the different four temperatures, the thermodynamic functions G, H and S were evaluated. The order of stability of the complexes agrees the Irving - Williams order. The positive values of H for the BHAEN complexes, especially for the most stable complexes species, (ML) in the case with Cu(II) and Fe(III), (MHL) in the case of Ni(II) & Co(II) and (ML2) in the case of Mn(II), reveal that the stability of these species is mainly due to the S values which are highly positive.

[1] Soroceanu, A.; Bargan, A. Advanced and Biomedical Applications of Schiff-Base Ligands and Their Metal Complexes: A Review. Crystals 2022, 12, 1436.
[2] Majumdar, D.; Chatterjee A.; Feizi-Dehnayebi M.; Kiran N. S.; Tuzun B.; Mishra D., 8-Aminoquinoline derived two Schiff base platforms: Synthesis, characterization, DFT insights, corrosion inhibitor, molecular docking, and pH-dependent antibacterial study, Heliyon, 2024, 10[15].
[3] Juyal, V. K.; Pathak, A.; Panwar, M.; Thakuri, S. C.; Prakash, O.; Agrwal, A.; & Nand, V., Schiff base metal complexes as a versatile catalyst: A review. Journal of Organometallic Chemistry, 2023, 122825.
[4] Al Zoubi, W., & Ko, Y. G. Schiff base complexes and their versatile applications as catalysts in oxidation of organic compounds: part I. Applied Organometallic Chemistry, 2017, 31[3], e3574.
[5] Kumar, M.; Singh, A. K.; Singh, V. K.; Yadav, R. K.; Singh, A. P.; Singh, S., Recent developments in the biological activities of 3d-metal complexes with salicylaldehyde-based N, O-donor Schiff base ligands. Coordination Chemistry Reviews, 2024, 505, 215663.
[6] Brown, L.S.; Gat, Y.; Sheves, M.; Yamazaki, Y.; Maeda, A.; Needleman, R.; Lanyi, J. K. The Retinal Schiff Base-Counterion Complex of Bacteriorhodopsin: Changed Geometry during the Photocycle Is a Cause of Proton Transfer to Aspartate 85, Biochemistry, 1994, 33, 12001-12011.
[7] Fishkin, N. E.; Sparrow, J. R.; Allikmets, R.; Nakanishi, K. Isolation and characterization of a retinal pigment epithelial cell fluorophore: An all-trans-retinal dimer conjugate, Proc. Natl. Acad. Sci. USA, 2005, 102, 7091-7096.
[8] Bieschke, J.; Zhang, Q.; Powers, E. T.; Lerner, R. A.; Kelly, J. W. Oxidative Metabolites Accelerate Alzheimer's Amyloidogenesis by a Two-Step Mechanism, Eliminating the Requirement for Nucleation, Biochemistry, 2005, 44, 4977-4983.
[9] Mure, M.; Brown, D. E.; Saysell, C.; Rogers, M. S.; Wilmot, C. M.; Kurtis, C. R.; McPherson. M. J.; Phillips, S. E. V.; Knowles, P. F.; Dooley, D. M. Role of the Interactions between the Active Site Base and the Substrate Schiff Base in Amine Oxidase Catalysis. Evidence from Structural and Spectroscopic Studies of the 2-Hydrazinopyridine Adduct of Escherichia coli Amine Oxidase, Biochemistry, 2005, 44, 1568-1582.
[10] Toyota, E.; Sekizaki, H.; Takahashi, Y.; Itoh, K.; Tanizawa, K. Amidino-Containing Schiff Base Copper [II] and Iron [III] Chelates as a Thrombin Inhibitor, Chem. Pharm. Bull. 2005, 53, 22-26.
[11] Ahmed, Z.; Ravandi, A.; Maguire, G. F.; Kuksis, A.; Connelly, P. W. Formation of apolipoprotein AI–phosphatidylcholine core aldehyde Schiff base adducts promotes uptake by THP-1 macrophages, Cardiovasc. Res. 2003, 58, 712-720.
[12] Ul-Hassan, M.; Scozzafava, A.; Chohan, Z. H.; Supuran, C. T. Carbonic Anhydrase Inhibitors: Metal Complexes of a Sulfanilamide Derived Schiff base and their Interaction with Isozymes I, II and IV, J Enzyme Inhib. 2001, 16, 499-505.
[13] Mederos, A.; Domi´nguez, S.; Molina, R. H.; Sanchiz, J.; Brito, F. Coordinating ability of ligands derived from phenylenediamines, Coord. Chem. Rev. 1999, 193–195, 857-911.
[14] Garg, B. S.; Kumar, D. N. Spectral studies of complexes of nickel[II] with tetradentate schiff bases having N2O2 donor groups, Spectrochimica Acta, 2003, Part A 59, 229-234.
[15] Lloret, F.; Mollar, M.; Faus, J.; Julve, M.; Dı´az, W. Solution chemistry of N,N'-ethylenebis(salicylideneimine) and its copper[II], nickel[II] and iron[III] complexes, Inorg. Chim. Acta 1991, 189, 195-206.
[16] Motekaitis, R. J.; Martell, A. E. Potentiometric determination of the stabilities of cobalt[II] complexes of polyamine Schiff bases and their dioxygen adducts, Inorg. Chem. 1988, 27, 2718-2724.
[17] Welcher, F. J. "The Analytical Uses of EDTA", Van. Nostrand, New York, 1957.
[18] Arida, H.A.; El-Saied, A.M.; El-Reefy S.A. Cadmium [II]-selective membrane coated graphite electrode based on recently synthesized bis-(4-hydroxyacetophenone)-ethylenediamine, Sensors, 2004, 4, 43.
[19] Gans, P.; Sabatini, A.; Vacca, A. A. SUPERQUAD: An Improved General Program for Computation of Formation Constants from Potentiometric Data. J. Chem. Soc. Dalton Trans. 1985, 1195-1200.[20] Anderegg, G.; Kholief, K. Extrapolation of molar equilibrium constants to zero ionic strength and parameters dependent on it. Copper[II], nickel[II], hydrogen[I] complexes with glycinate ion and calcium[II], hydrogen[I] complexes with nitrilotriacetate ion, Talanta, 1995, 42, 1067-79.
[21] Sahoo, S. K.; Muthu, S. E.; Baral, M.; Kanungo, B. K. Potentiometric and spectrophotometric study of a new dipodal ligand N,N_-bis{2-[(2-hydroxybenzylidine)amino]ethyl}malonamide with Co[II], Ni[II], Cu[II] and Zn[II], Spectrochimica Acta, 2006, Part A: Molecular and Biomolecular Spectroscopy, Vol 63, 3, 574-586.
[22] Motekaitis, R. J.; Martell, A. E.; Nelson, D. A. Formation and stabilities of cobalt[II] chelates of N-benzyl triamine Schiff bases and their dioxygen complexes, Inorg. Chem. 1984, 23, 275-283.
[23] Irving, H.; Williams, R. J. P. Order of Stability of Metal Complexes, Nature, 1948, 162, 746.
[24] Wahid U. M.; Tuli, G. D.; Madam, R. D. “Selected Topics in Inorganic chemistry”, S. Chand and Company LTD Ram Nagar, New Delhi, 1997.