[1] Soroceanu, A.;
Bargan, A. Advanced and Biomedical Applications of Schiff-Base Ligands and
Their Metal Complexes: A Review. Crystals 2022, 12, 1436.
[2] Majumdar, D.; Chatterjee A.; Feizi-Dehnayebi M.; Kiran N. S.; Tuzun B.;
Mishra D., 8-Aminoquinoline derived two Schiff base platforms: Synthesis,
characterization, DFT insights, corrosion inhibitor, molecular docking, and
pH-dependent antibacterial study, Heliyon, 2024, 10[15].
[3] Juyal, V. K.; Pathak, A.; Panwar, M.; Thakuri, S. C.; Prakash, O.; Agrwal,
A.; & Nand, V., Schiff base metal complexes as a versatile catalyst: A
review. Journal of Organometallic Chemistry, 2023, 122825.
[4] Al Zoubi, W., & Ko, Y. G. Schiff base complexes and their versatile
applications as catalysts in oxidation of organic compounds: part I. Applied
Organometallic Chemistry, 2017, 31[3], e3574.
[5] Kumar, M.; Singh, A. K.; Singh, V. K.; Yadav, R. K.; Singh, A. P.; Singh,
S., Recent developments in the biological activities of 3d-metal complexes with
salicylaldehyde-based N, O-donor Schiff base ligands. Coordination Chemistry Reviews, 2024, 505, 215663.
[6] Brown, L.S.; Gat, Y.; Sheves, M.; Yamazaki, Y.; Maeda, A.; Needleman, R.;
Lanyi, J. K. The Retinal Schiff Base-Counterion Complex of Bacteriorhodopsin:
Changed Geometry during the Photocycle Is a Cause of Proton Transfer to
Aspartate 85, Biochemistry, 1994, 33, 12001-12011.
[7] Fishkin, N. E.; Sparrow, J. R.; Allikmets, R.; Nakanishi, K. Isolation and
characterization of a retinal pigment epithelial cell fluorophore: An
all-trans-retinal dimer conjugate, Proc. Natl. Acad. Sci. USA, 2005, 102, 7091-7096.
[8] Bieschke, J.; Zhang, Q.; Powers, E. T.; Lerner, R. A.; Kelly, J. W.
Oxidative Metabolites Accelerate Alzheimer's Amyloidogenesis by a Two-Step
Mechanism, Eliminating the Requirement for Nucleation, Biochemistry, 2005, 44, 4977-4983.
[9] Mure, M.; Brown, D. E.; Saysell, C.; Rogers, M. S.; Wilmot, C. M.; Kurtis,
C. R.; McPherson. M. J.; Phillips, S. E. V.; Knowles, P. F.; Dooley, D. M. Role
of the Interactions between the Active Site Base and the Substrate Schiff Base
in Amine Oxidase Catalysis. Evidence from Structural and Spectroscopic Studies
of the 2-Hydrazinopyridine Adduct of Escherichia coli Amine Oxidase,
Biochemistry, 2005, 44, 1568-1582.
[10] Toyota, E.; Sekizaki, H.; Takahashi, Y.; Itoh, K.; Tanizawa, K.
Amidino-Containing Schiff Base Copper [II] and Iron [III] Chelates as a
Thrombin Inhibitor, Chem. Pharm. Bull. 2005, 53, 22-26.
[11] Ahmed, Z.; Ravandi, A.; Maguire, G. F.; Kuksis, A.; Connelly, P. W.
Formation of apolipoprotein AI–phosphatidylcholine core aldehyde Schiff base
adducts promotes uptake by THP-1 macrophages, Cardiovasc. Res. 2003, 58, 712-720.
[12] Ul-Hassan, M.; Scozzafava, A.; Chohan, Z. H.; Supuran, C. T. Carbonic
Anhydrase Inhibitors: Metal Complexes of a Sulfanilamide Derived Schiff base
and their Interaction with Isozymes I, II and IV, J Enzyme Inhib. 2001, 16, 499-505.
[13] Mederos, A.; Domi´nguez, S.; Molina, R. H.; Sanchiz, J.; Brito, F.
Coordinating ability of ligands derived from phenylenediamines, Coord. Chem.
Rev. 1999, 193–195, 857-911.
[14] Garg, B. S.; Kumar, D. N. Spectral studies of complexes of nickel[II] with
tetradentate schiff bases having N2O2 donor groups, Spectrochimica Acta, 2003,
Part A 59, 229-234.
[15] Lloret, F.; Mollar, M.; Faus, J.; Julve, M.; Dı´az, W. Solution chemistry
of N,N'-ethylenebis(salicylideneimine) and its copper[II], nickel[II] and
iron[III] complexes, Inorg. Chim. Acta 1991, 189, 195-206.
[16] Motekaitis, R. J.; Martell, A. E. Potentiometric determination of the
stabilities of cobalt[II] complexes of polyamine Schiff bases and their
dioxygen adducts, Inorg. Chem. 1988, 27, 2718-2724.
[17] Welcher, F. J. "The Analytical Uses of EDTA", Van. Nostrand, New
York, 1957.
[18] Arida, H.A.; El-Saied, A.M.; El-Reefy S.A. Cadmium [II]-selective membrane
coated graphite electrode based on recently synthesized
bis-(4-hydroxyacetophenone)-ethylenediamine, Sensors, 2004, 4, 43.
[19] Gans, P.; Sabatini, A.; Vacca, A. A. SUPERQUAD: An Improved General
Program for Computation of Formation Constants from Potentiometric Data. J.
Chem. Soc. Dalton Trans. 1985, 1195-1200.[20] Anderegg, G.; Kholief, K.
Extrapolation of molar equilibrium constants to zero ionic strength and
parameters dependent on it. Copper[II], nickel[II], hydrogen[I] complexes with
glycinate ion and calcium[II], hydrogen[I] complexes with nitrilotriacetate
ion, Talanta, 1995, 42, 1067-79.
[21] Sahoo, S. K.; Muthu, S. E.; Baral, M.; Kanungo, B. K. Potentiometric and
spectrophotometric study of a new dipodal ligand
N,N_-bis{2-[(2-hydroxybenzylidine)amino]ethyl}malonamide with Co[II], Ni[II],
Cu[II] and Zn[II], Spectrochimica Acta, 2006, Part A: Molecular and
Biomolecular Spectroscopy, Vol 63, 3, 574-586.
[22] Motekaitis, R. J.; Martell, A. E.; Nelson, D. A. Formation and stabilities
of cobalt[II] chelates of N-benzyl triamine Schiff bases and their dioxygen
complexes, Inorg. Chem. 1984, 23, 275-283.
[23] Irving, H.; Williams, R. J. P. Order of Stability of Metal Complexes,
Nature, 1948, 162, 746.
[24] Wahid U. M.; Tuli, G. D.; Madam, R. D. “Selected Topics in Inorganic
chemistry”, S. Chand and Company LTD Ram Nagar, New Delhi, 1997.