Advances in Bioinformatics Techniques to Predict Neoantigen: Exploring Tumor Immune Microenvironment and Transforming Data into Therapeutic Insights

Abdulwahed Alrehaily

Keywords: Bioinformatics, Machine Learning (ML), Artificial Intelligence (AI), Immuno-oncology, Immunotherapy, Computational Pipelines.

The incorporation of bioinformatics into the prediction of neoantigens has greatly enhanced cancer immunotherapy by improving the understanding of tumor-specific antigens that can trigger targeted immune responses. This review emphasizes the vital role of bioinformatics in identifying neoantigens, which are unique antigens arising from somatic mutations, and their significance in customizing cancer treatments like therapeutic vaccines and T-cell therapies. It critically examines advanced sequencing technologies, such as whole-genome (WGS) and whole-exome sequencing (WES), for their role in assessing mutations that lead to neoantigen production. The review also discusses innovative computational methods, including artificial intelligence (AI), machine learning (ML), and deep learning (DL), for their effectiveness in predicting immunogenic neoantigens and tailoring personalized therapies. Case studies illustrate the successes achieved through these bioinformatics advancements, showcasing their potential in developing personalized vaccines that address the specific genetic makeup of tumors. Despite challenges like tumor heterogeneity and the complexities of data analysis, ongoing advancements. 

[1]    Podlaha, O.; M. Riester; S. De, and F. Michor, Evolution of the cancer genome. Trends Genet, 2012. 28(4): p. 155-63.

[2]    Hosseini, H.; M.M.S. Obradovic; M. Hoffmann; K.L. Harper; M.S. Sosa; M. Werner-Klein; L.K. Nanduri; C. Werno; C. Ehrl; M. Maneck; N. Patwary; G. Haunschild; M. Guzvic; C. Reimelt; M. Grauvogl; N. Eichner; F. Weber; A.D. Hartkopf; F.A. Taran; S.Y. Brucker; T. Fehm; B. Rack; S. Buchholz; R. Spang; G. Meister; J.A. Aguirre-Ghiso, and C.A. Klein, Early dissemination seeds metastasis in breast cancer. Nature, 2016. 540(7634): p. 552-558.

[3]    Coussens, L.M. and Z. Werb, Inflammation and cancer. Nature, 2002. 420(6917): p. 860-7.

[4]    Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.

[5]    Gonzalez, H.; C. Hagerling, and Z. Werb, Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev, 2018. 32(19-20): p. 1267-1284.

[6]    Wei, S.C.; C.R. Duffy, and J.P. Allison, Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov, 2018. 8(9): p. 1069-1086.

[7]    Zhang, Y. and Z. Zhang, The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cellular & Molecular Immunology, 2020. 17(8): p. 807-821.

[8]    Matsushita, H.; M.D. Vesely; D.C. Koboldt; C.G. Rickert; R. Uppaluri; V.J. Magrini; C.D. Arthur; J.M. White; Y.S. Chen; L.K. Shea; J. Hundal; M.C. Wendl; R. Demeter; T. Wylie; J.P. Allison; M.J. Smyth; L.J. Old; E.R. Mardis, and R.D. Schreiber, Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature, 2012. 482(7385): p. 400-4.

[9]    McGranahan, N.; A.J. Furness; R. Rosenthal; S. Ramskov; R. Lyngaa; S.K. Saini; M. Jamal-Hanjani; G.A. Wilson; N.J. Birkbak; C.T. Hiley; T.B. Watkins; S. Shafi; N. Murugaesu; R. Mitter; A.U. Akarca; J. Linares; T. Marafioti; J.Y. Henry; E.M. Van Allen; D. Miao; B. Schilling; D. Schadendorf; L.A. Garraway; V. Makarov; N.A. Rizvi; A. Snyder; M.D. Hellmann; T. Merghoub; J.D. Wolchok; S.A. Shukla; C.J. Wu; K.S. Peggs; T.A. Chan; S.R. Hadrup; S.A. Quezada, and C. Swanton, Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 2016. 351(6280): p. 1463-9.

[10] Richters, M.M.; H. Xia; K.M. Campbell; W.E. Gillanders; O.L. Griffith, and M. Griffith, Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med, 2019. 11(1): p. 56.

[11] Athieniti, E. and G.M. Spyrou, A guide to multi-omics data collection and integration for translational medicine. Computational and Structural Biotechnology Journal, 2023. 21: p. 134-149.

[12] Jovic, D.; X. Liang; H. Zeng; L. Lin; F. Xu, and Y. Luo, Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med, 2022. 12(3): p. e694.

[13] Wang, Y.; B. Liu; G. Zhao; Y. Lee; A. Buzdin; X. Mu; J. Zhao; H. Chen, and X. Li, Spatial transcriptomics: Technologies, applications and experimental considerations. Genomics, 2023. 115(5): p. 110671.

[14] Chen, B.; M.S. Khodadoust; C.L. Liu; A.M. Newman, and A.A. Alizadeh, Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol Biol, 2018. 1711: p. 243-259.

[15] Xie, N.; G. Shen; W. Gao; Z. Huang; C. Huang, and L. Fu, Neoantigens: promising targets for cancer therapy. Signal Transduction and Targeted Therapy, 2023. 8(1): p. 9.

[16] Zhang, T.; E. Kurban, and Z. Wang, Neoantigens: The Novel Precision Cancer Immunotherapy. Biologics, 2023. 3(4): p. 321-334.

[17] Pearlman, A.H.; M.S. Hwang; M.F. Konig; E.H.-C. Hsiue; J. Douglass; S.R. DiNapoli; B.J. Mog; C. Bettegowda; D.M. Pardoll; S.B. Gabelli; N. Papadopoulos; K.W. Kinzler; B. Vogelstein, and S. Zhou, Targeting public neoantigens for cancer immunotherapy. Nature Cancer, 2021. 2(5): p. 487-497.

[18] Alexandrov, L.B.; S. Nik-Zainal; D.C. Wedge; S.A. Aparicio; S. Behjati; A.V. Biankin; G.R. Bignell; N. Bolli; A. Borg, and A.-L. Børresen-Dale, Signatures of mutational processes in human cancer. nature, 2013. 500(7463): p. 415-421.

[19] Yadav, M.; S. Jhunjhunwala; Q.T. Phung; P. Lupardus; J. Tanguay; S. Bumbaca; C. Franci; T.K. Cheung; J. Fritsche; T. Weinschenk; Z. Modrusan; I. Mellman; J.R. Lill, and L. Delamarre, Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature, 2014. 515(7528): p. 572-576.

[20] Hundal, J.; S. Kiwala; J. McMichael; C.A. Miller; H. Xia; A.T. Wollam; C.J. Liu; S. Zhao; Y.Y. Feng; A.P. Graubert; A.Z. Wollam; J. Neichin; M. Neveau; J. Walker; W.E. Gillanders; E.R. Mardis; O.L. Griffith, and M. Griffith, pVACtools: A Computational Toolkit to Identify and Visualize Cancer Neoantigens. Cancer Immunol Res, 2020. 8(3): p. 409-420.

[21] Spranger, S.; D. Dai; B. Horton, and T.F. Gajewski, Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy. Cancer Cell, 2017. 31(5): p. 711-723 e4.

[22] Jardim, D.L.; A. Goodman; D. de Melo Gagliato, and R. Kurzrock, The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker. Cancer Cell, 2021. 39(2): p. 154-173.

[23] Pereira, R.; J. Oliveira, and M. Sousa, Bioinformatics and Computational Tools for Next-Generation Sequencing Analysis in Clinical Genetics. J Clin Med, 2020. 9(1).

[24] Burley, S.K.; C. Bhikadiya; C. Bi; S. Bittrich; L. Chen; G.V. Crichlow; C.H. Christie; K. Dalenberg; L. Di Costanzo; J.M. Duarte; S. Dutta; Z. Feng; S. Ganesan; D.S. Goodsell; S. Ghosh; R.K. Green; V. Guranović; D. Guzenko; B.P. Hudson; Catherine L. Lawson; Y. Liang; R. Lowe; H. Namkoong; E. Peisach; I. Persikova; C. Randle; A. Rose; Y. Rose; A. Sali; J. Segura; M. Sekharan; C. Shao; Y.-P. Tao; M. Voigt; John D. Westbrook; J.Y. Young; C. Zardecki, and M. Zhuravleva, RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, 2020. 49(D1): p. D437-D451.

[25] Satam, H.; K. Joshi; U. Mangrolia; S. Waghoo; G. Zaidi; S. Rawool; R.P. Thakare; S. Banday; A.K. Mishra; G. Das, and S.K. Malonia, Next-Generation Sequencing Technology: Current Trends and Advancements. Biology (Basel), 2023. 12(7).

[26] Costain, G.; R.D. Cohn; S.W. Scherer, and C.R. Marshall, Genome sequencing as a diagnostic test. CMAJ, 2021. 193(42): p. E1626-E1629.

[27] Logsdon, G.A.; M.R. Vollger, and E.E. Eichler, Long-read human genome sequencing and its applications. Nat Rev Genet, 2020. 21(10): p. 597-614.

[28] Warr, A.; C. Robert; D. Hume; A. Archibald; N. Deeb, and M. Watson, Exome Sequencing: Current and Future Perspectives. G3 (Bethesda), 2015. 5(8): p. 1543-50.

[29] Williams, M.J.; A. Sottoriva, and T.A. Graham, Measuring Clonal Evolution in Cancer with Genomics. Annu Rev Genomics Hum Genet, 2019. 20: p. 309-329.

[30] Li, H.; A. Coghlan; J. Ruan; L.J. Coin; J.-K. Heriche; L. Osmotherly; R. Li; T. Liu; Z. Zhang, and L. Bolund, TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic acids research, 2006. 34(suppl_1): p. D572-D580.

[31] Robbins, P.F.; Y.-C. Lu; M. El-Gamil; Y.F. Li; C. Gross; J. Gartner; J.C. Lin; J.K. Teer; P. Cliften; E. Tycksen; Y. Samuels, and S.A. Rosenberg, Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nature Medicine, 2013. 19(6): p. 747-752.

[32] De Mattos-Arruda, L.; M. Vazquez; F. Finotello; R. Lepore; E. Porta; J. Hundal; P. Amengual-Rigo; C.K.Y. Ng; A. Valencia; J. Carrillo; T.A. Chan; V. Guallar; N. McGranahan; J. Blanco, and M. Griffith, Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the ESMO Precision Medicine Working Group. Annals of Oncology, 2020. 31(8): p. 978-990.

[33] Hackl, H.; P. Charoentong; F. Finotello, and Z. Trajanoski, Computational genomics tools for dissecting tumour–immune cell interactions. Nature Reviews Genetics, 2016. 17(8): p. 441-458.

[34] Li, H.; B. Handsaker; A. Wysoker; T. Fennell; J. Ruan; N. Homer; G. Marth; G. Abecasis; R. Durbin, and S. Genome Project Data Processing, The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009. 25(16): p. 2078-9.

[35] Koboldt, D.C.; Q. Zhang; D.E. Larson; D. Shen; M.D. McLellan; L. Lin; C.A. Miller; E.R. Mardis; L. Ding, and R.K. Wilson, VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res, 2012. 22(3): p. 568-76.

[36] McKenna, A.; M. Hanna; E. Banks; A. Sivachenko; K. Cibulskis; A. Kernytsky; K. Garimella; D. Altshuler; S. Gabriel; M. Daly, and M.A. DePristo, The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010. 20(9): p. 1297-303.

[37] Cibulskis, K.; M.S. Lawrence; S.L. Carter; A. Sivachenko; D. Jaffe; C. Sougnez; S. Gabriel; M. Meyerson; E.S. Lander, and G. Getz, Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol, 2013. 31(3): p. 213-9.

[38] Saunders, C.T.; W.S. Wong; S. Swamy; J. Becq; L.J. Murray, and R.K. Cheetham, Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics, 2012. 28(14): p. 1811-7.

[39] Garrison, E. and G. Marth, Haplotype-based variant detection from short-read sequencing. arXiv, 2016. 1207.

[40] Rimmer, A.; H. Phan; I. Mathieson; Z. Iqbal; S.R.F. Twigg; W.G.S. Consortium; A.O.M. Wilkie; G. McVean, and G. Lunter, Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet, 2014. 46(8): p. 912-918.

[41] Narzisi, G.; A. Corvelo; K. Arora; E.A. Bergmann; M. Shah; R. Musunuri; A.-K. Emde; N. Robine; V. Vacic, and M.C. Zody, Genome-wide somatic variant calling using localized colored de Bruijn graphs. Communications Biology, 2018. 1(1): p. 20.

[42] Poplin, R.; P.-C. Chang; D. Alexander; S. Schwartz; T. Colthurst; A. Ku; D. Newburger; J. Dijamco; N. Nguyen; P.T. Afshar; S.S. Gross; L. Dorfman; C.Y. McLean, and M.A. DePristo, A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology, 2018. 36(10): p. 983-987.

[43] Larson, D.E.; C.C. Harris; K. Chen; D.C. Koboldt; T.E. Abbott; D.J. Dooling; T.J. Ley; E.R. Mardis; R.K. Wilson, and L. Ding, SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics, 2012. 28(3): p. 311-7.

[44] Wilm, A.; P.P. Aw; D. Bertrand; G.H. Yeo; S.H. Ong; C.H. Wong; C.C. Khor; R. Petric; M.L. Hibberd, and N. Nagarajan, LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res, 2012. 40(22): p. 11189-201.

[45] Skinner, M.E.; A.V. Uzilov; L.D. Stein; C.J. Mungall, and I.H. Holmes, JBrowse: a next-generation genome browser. Genome Res, 2009. 19(9): p. 1630-8.

[46] Gusev, A.; J.K. Lowe; M. Stoffel; M.J. Daly; D. Altshuler; J.L. Breslow; J.M. Friedman, and I. Pe'er, Whole population, genome-wide mapping of hidden relatedness. Genome research, 2009. 19(2): p. 318-326.

[47] Lin, Y.-L.; P.-C. Chang; C. Hsu; M.-Z. Hung; Y.-H. Chien; W.-L. Hwu; F. Lai, and N.-C. Lee, Comparison of GATK and DeepVariant by trio sequencing. Scientific Reports, 2022. 12(1): p. 1809.

[48] Obradovic, A.; L. Vlahos; P. Laise; J. Worley; X. Tan; A. Wang, and A. Califano, PISCES: A pipeline for the systematic, protein activity-based analysis of single cell RNA sequencing data. Biorxiv, 2021. 6: p. 22.

[49] Freed, D.; R. Pan, and R. Aldana, TNscope: accurate detection of somatic mutations with haplotype-based variant candidate detection and machine learning filtering. biorxiv, 2018: p. 250647.

[50] Fang, H.; E.A. Bergmann; K. Arora; V. Vacic; M.C. Zody; I. Iossifov; J.A. O'Rawe; Y. Wu; L.T. Jimenez Barron; J. Rosenbaum; M. Ronemus; Y.-h. Lee; Z. Wang; E. Dikoglu; V. Jobanputra; G.J. Lyon; M. Wigler; M.C. Schatz, and G. Narzisi, Indel variant analysis of short-read sequencing data with Scalpel. Nature Protocols, 2016. 11(12): p. 2529-2548.

[51] Sahraeian, S.M.E.; R. Liu; B. Lau; K. Podesta; M. Mohiyuddin, and H.Y. Lam, Deep convolutional neural networks for accurate somatic mutation detection. Nature communications, 2019. 10(1): p. 1041.

[52] Cooke, D.; G. Lunter, and D. Wedge, Accurate genotyping of single cells with Octopus. 2021.

[53] Kim, S.; K. Scheffler; A.L. Halpern; M.A. Bekritsky; E. Noh; M. Källberg; X. Chen; Y. Kim; D. Beyter, and P. Krusche, Strelka2: fast and accurate calling of germline and somatic variants. Nature methods, 2018. 15(8): p. 591-594.

[54] Gehring, J.S.; B. Fischer; M. Lawrence, and W. Huber, SomaticSignatures: inferring mutational signatures from single-nucleotide variants. Bioinformatics, 2015. 31(22): p. 3673-3675.

[55] Mayakonda, A.; D.-C. Lin; Y. Assenov; C. Plass, and H.P. Koeffler, Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome research, 2018. 28(11): p. 1747-1756.

[56] Rosenthal, R.; N. McGranahan; J. Herrero; B.S. Taylor, and C. Swanton, DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome biology, 2016. 17: p. 1-11.

[57] Sahin, U.; E. Derhovanessian; M. Miller; B.-P. Kloke; P. Simon; M. Löwer; V. Bukur; A.D. Tadmor; U. Luxemburger; B. Schrörs; T. Omokoko; M. Vormehr; C. Albrecht; A. Paruzynski; A.N. Kuhn; J. Buck; S. Heesch; K.H. Schreeb; F. Müller; I. Ortseifer; I. Vogler; E. Godehardt; S. Attig; R. Rae; A. Breitkreuz; C. Tolliver; M. Suchan; G. Martic; A. Hohberger; P. Sorn; J. Diekmann; J. Ciesla; O. Waksmann; A.-K. Brück; M. Witt; M. Zillgen; A. Rothermel; B. Kasemann; D. Langer; S. Bolte; M. Diken; S. Kreiter; R. Nemecek; C. Gebhardt; S. Grabbe; C. Höller; J. Utikal; C. Huber; C. Loquai, and Ö. Türeci, Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017. 547(7662): p. 222-226.

[58] Keskin, D.B.; A.J. Anandappa; J. Sun; I. Tirosh; N.D. Mathewson; S. Li; G. Oliveira; A. Giobbie-Hurder; K. Felt; E. Gjini; S.A. Shukla; Z. Hu; L. Li; P.M. Le; R.L. Allesoe; A.R. Richman; M.S. Kowalczyk; S. Abdelrahman; J.E. Geduldig; S. Charbonneau; K. Pelton; J.B. Iorgulescu; L. Elagina; W. Zhang; O. Olive; C. McCluskey; L.R. Olsen; J. Stevens; W.J. Lane; A.M. Salazar; H. Daley; P.Y. Wen; E.A. Chiocca; M. Harden; N.J. Lennon; S. Gabriel; G. Getz; E.S. Lander; A. Regev; J. Ritz; D. Neuberg; S.J. Rodig; K.L. Ligon; M.L. Suva; K.W. Wucherpfennig; N. Hacohen; E.F. Fritsch; K.J. Livak; P.A. Ott; C.J. Wu, and D.A. Reardon, Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 2019. 565(7738): p. 234-239.

[59] Lin, X.; S. Tang; Y. Guo; R. Tang; Z. Li; X. Pan; G. Chen; L. Qiu; X. Dong; L. Zhang; X. Liu; Z. Cai, and B. Xie, Personalized neoantigen vaccine enhances the therapeutic efficacy of bevacizumab and anti-PD-1 antibody in advanced non-small cell lung cancer. Cancer Immunol Immunother, 2024. 73(2): p. 26.

[60] Gevaert, C.M.; M. Carman; B. Rosman; Y. Georgiadou, and R. Soden, Fairness and accountability of AI in disaster risk management: Opportunities and challenges. Patterns, 2021. 2(11).

[61] Ahmadi, A., Quantum Computing and Artificial Intelligence: The Synergy of Two Revolutionary Technologies. Asian Journal of Electrical Sciences, 2023. 12(2): p. 15-27.

[62] Martonosi, M. and M. Roetteler, Next steps in quantum computing: Computer science's role. arXiv preprint arXiv:1903.10541, 2019.

[63] Niraula, D.; J. Jamaluddin; M.M. Matuszak; R.K.T. Haken, and I.E. Naqa, Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy. Scientific reports, 2021. 11(1): p. 23545.

[64] Mustapha, M.T.; I. Ozsahin, and D.U. Ozsahin, Chapter 2 - Convolution neural network and deep learning, in Artificial Intelligence and Image Processing in Medical Imaging, W.A. Zgallai and D.U. Ozsahin, Editors. 2024, Academic Press. p. 21-50.

[65] Johnson, K.B.; W.Q. Wei; D. Weeraratne; M.E. Frisse; K. Misulis; K. Rhee; J. Zhao, and J.L. Snowdon, Precision Medicine, AI, and the Future of Personalized Health Care. Clin Transl Sci, 2021. 14(1): p. 86-93.

[66] Yandell, M.D. and W.H. Majoros, Genomics and natural language processing. Nature Reviews Genetics, 2002. 3(8): p. 601-610.

[67] Rayhan, A.; R. Kinzler, and R. Rayhan, NATURAL LANGUAGE PROCESSING: TRANSFORMING HOW MACHINES UNDERSTAND HUMAN LANGUAGE. 2023.

[68] Velupillai, S.; H. Suominen; M. Liakata; A. Roberts; A.D. Shah; K. Morley; D. Osborn; J. Hayes; R. Stewart; J. Downs; W. Chapman, and R. Dutta, Using clinical Natural Language Processing for health outcomes research: Overview and actionable suggestions for future advances. Journal of Biomedical Informatics, 2018. 88: p. 11-19.

[69] Linette, G.P. and B.M. Carreno, Neoantigen Vaccines Pass the Immunogenicity Test. Trends Mol Med, 2017. 23(10): p. 869-871.

[70] Ott, P.A.; Z. Hu; D.B. Keskin; S.A. Shukla; J. Sun; D.J. Bozym; W. Zhang; A. Luoma; A. Giobbie-Hurder; L. Peter; C. Chen; O. Olive; T.A. Carter; S. Li; D.J. Lieb; T. Eisenhaure; E. Gjini; J. Stevens; W.J. Lane; I. Javeri; K. Nellaiappan; A.M. Salazar; H. Daley; M. Seaman; E.I. Buchbinder; C.H. Yoon; M. Harden; N. Lennon; S. Gabriel; S.J. Rodig; D.H. Barouch; J.C. Aster; G. Getz; K. Wucherpfennig; D. Neuberg; J. Ritz; E.S. Lander; E.F. Fritsch; N. Hacohen, and C.J. Wu, An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 2017. 547(7662): p. 217-221.

[71] Braiteh, F.; P. LoRusso; A. Balmanoukian; S. Klempner; D.R. Camidge; M. Hellmann; M. Gordon; J. Bendell; L. Mueller, and R. Sabado, Abstract CT169: A phase Ia study to evaluate RO7198457, an individualized Neoantigen Specific immunoTherapy (iNeST), in patients with locally advanced or metastatic solid tumors. Cancer Research, 2020. 80(16_Supplement): p. CT169-CT169.

[72] Sahin, U.; P. Oehm; E. Derhovanessian; R.A. Jabulowsky; M. Vormehr; M. Gold; D. Maurus; D. Schwarck-Kokarakis; A.N. Kuhn; T. Omokoko; L.M. Kranz; M. Diken; S. Kreiter; H. Haas; S. Attig; R. Rae; K. Cuk; A. Kemmer-Brück; A. Breitkreuz; C. Tolliver; J. Caspar; J. Quinkhardt; L. Hebich; M. Stein; A. Hohberger; I. Vogler; I. Liebig; S. Renken; J. Sikorski; M. Leierer; V. Müller; H. Mitzel-Rink; M. Miederer; C. Huber; S. Grabbe; J. Utikal; A. Pinter; R. Kaufmann; J.C. Hassel; C. Loquai, and Ö. Türeci, An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature, 2020. 585(7823): p. 107-112.

[73] Delord, J.-P.; M.S. Block; C. Ottensmeier; G. Colon-Otero; C. Le Tourneau; A. Lalanne; C. Jamet; O. Lantz; K.L. Knutson, and G. Lacoste, Phase 1 studies of personalized neoantigen vaccine TG4050 in ovarian carcinoma (OC) and head and neck squamous cell carcinoma (HNSCC). 2022, American Society of Clinical Oncology.

[74] Tran, E.; P.F. Robbins, and S.A. Rosenberg, 'Final common pathway' of human cancer immunotherapy: targeting random somatic mutations. Nature Immunology, 2017. 18(3): p. 255-262.