[1]
Podlaha,
O.; M. Riester; S. De, and F. Michor, Evolution of the cancer genome. Trends
Genet, 2012. 28(4): p. 155-63.
[2]
Hosseini,
H.; M.M.S. Obradovic; M. Hoffmann; K.L. Harper; M.S. Sosa; M. Werner-Klein;
L.K. Nanduri; C. Werno; C. Ehrl; M. Maneck; N. Patwary; G. Haunschild; M.
Guzvic; C. Reimelt; M. Grauvogl; N. Eichner; F. Weber; A.D. Hartkopf; F.A.
Taran; S.Y. Brucker; T. Fehm; B. Rack; S. Buchholz; R. Spang; G. Meister; J.A.
Aguirre-Ghiso, and C.A. Klein, Early dissemination seeds metastasis in breast
cancer. Nature, 2016. 540(7634): p. 552-558.
[3]
Coussens,
L.M. and Z. Werb, Inflammation and cancer. Nature, 2002. 420(6917): p. 860-7.
[4]
Hanahan,
D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011.
144(5): p. 646-74.
[5]
Gonzalez,
H.; C. Hagerling, and Z. Werb, Roles of the immune system in cancer: from tumor
initiation to metastatic progression. Genes Dev, 2018. 32(19-20): p. 1267-1284.
[6]
Wei,
S.C.; C.R. Duffy, and J.P. Allison, Fundamental Mechanisms of Immune Checkpoint
Blockade Therapy. Cancer Discov, 2018. 8(9): p. 1069-1086.
[7]
Zhang,
Y. and Z. Zhang, The history and advances in cancer immunotherapy:
understanding the characteristics of tumor-infiltrating immune cells and their
therapeutic implications. Cellular & Molecular Immunology, 2020. 17(8): p.
807-821.
[8]
Matsushita,
H.; M.D. Vesely; D.C. Koboldt; C.G. Rickert; R. Uppaluri; V.J. Magrini; C.D.
Arthur; J.M. White; Y.S. Chen; L.K. Shea; J. Hundal; M.C. Wendl; R. Demeter; T.
Wylie; J.P. Allison; M.J. Smyth; L.J. Old; E.R. Mardis, and R.D. Schreiber,
Cancer exome analysis reveals a T-cell-dependent mechanism of cancer
immunoediting. Nature, 2012. 482(7385): p. 400-4.
[9]
McGranahan,
N.; A.J. Furness; R. Rosenthal; S. Ramskov; R. Lyngaa; S.K. Saini; M.
Jamal-Hanjani; G.A. Wilson; N.J. Birkbak; C.T. Hiley; T.B. Watkins; S. Shafi;
N. Murugaesu; R. Mitter; A.U. Akarca; J. Linares; T. Marafioti; J.Y. Henry;
E.M. Van Allen; D. Miao; B. Schilling; D. Schadendorf; L.A. Garraway; V.
Makarov; N.A. Rizvi; A. Snyder; M.D. Hellmann; T. Merghoub; J.D. Wolchok; S.A.
Shukla; C.J. Wu; K.S. Peggs; T.A. Chan; S.R. Hadrup; S.A. Quezada, and C.
Swanton, Clonal neoantigens elicit T cell immunoreactivity and sensitivity to
immune checkpoint blockade. Science, 2016. 351(6280): p. 1463-9.
[10]
Richters,
M.M.; H. Xia; K.M. Campbell; W.E. Gillanders; O.L. Griffith, and M. Griffith,
Best practices for bioinformatic characterization of neoantigens for clinical
utility. Genome Med, 2019. 11(1): p. 56.
[11]
Athieniti,
E. and G.M. Spyrou, A guide to multi-omics data collection and integration for
translational medicine. Computational and Structural Biotechnology Journal,
2023. 21: p. 134-149.
[12]
Jovic,
D.; X. Liang; H. Zeng; L. Lin; F. Xu, and Y. Luo, Single-cell RNA sequencing
technologies and applications: A brief overview. Clin Transl Med, 2022. 12(3):
p. e694.
[13]
Wang,
Y.; B. Liu; G. Zhao; Y. Lee; A. Buzdin; X. Mu; J. Zhao; H. Chen, and X. Li,
Spatial transcriptomics: Technologies, applications and experimental
considerations. Genomics, 2023. 115(5): p. 110671.
[14]
Chen,
B.; M.S. Khodadoust; C.L. Liu; A.M. Newman, and A.A. Alizadeh, Profiling Tumor
Infiltrating Immune Cells with CIBERSORT. Methods Mol Biol, 2018. 1711: p.
243-259.
[15]
Xie,
N.; G. Shen; W. Gao; Z. Huang; C. Huang, and L. Fu, Neoantigens: promising
targets for cancer therapy. Signal Transduction and Targeted Therapy, 2023.
8(1): p. 9.
[16]
Zhang,
T.; E. Kurban, and Z. Wang, Neoantigens: The Novel Precision Cancer
Immunotherapy. Biologics, 2023. 3(4): p. 321-334.
[17]
Pearlman,
A.H.; M.S. Hwang; M.F. Konig; E.H.-C. Hsiue; J. Douglass; S.R. DiNapoli; B.J.
Mog; C. Bettegowda; D.M. Pardoll; S.B. Gabelli; N. Papadopoulos; K.W. Kinzler;
B. Vogelstein, and S. Zhou, Targeting public neoantigens for cancer
immunotherapy. Nature Cancer, 2021. 2(5): p. 487-497.
[18]
Alexandrov,
L.B.; S. Nik-Zainal; D.C. Wedge; S.A. Aparicio; S. Behjati; A.V. Biankin; G.R.
Bignell; N. Bolli; A. Borg, and A.-L. Børresen-Dale, Signatures of mutational
processes in human cancer. nature, 2013. 500(7463): p. 415-421.
[19]
Yadav,
M.; S. Jhunjhunwala; Q.T. Phung; P. Lupardus; J. Tanguay; S. Bumbaca; C.
Franci; T.K. Cheung; J. Fritsche; T. Weinschenk; Z. Modrusan; I. Mellman; J.R.
Lill, and L. Delamarre, Predicting immunogenic tumour mutations by combining
mass spectrometry and exome sequencing. Nature, 2014. 515(7528): p. 572-576.
[20]
Hundal,
J.; S. Kiwala; J. McMichael; C.A. Miller; H. Xia; A.T. Wollam; C.J. Liu; S.
Zhao; Y.Y. Feng; A.P. Graubert; A.Z. Wollam; J. Neichin; M. Neveau; J. Walker;
W.E. Gillanders; E.R. Mardis; O.L. Griffith, and M. Griffith, pVACtools: A
Computational Toolkit to Identify and Visualize Cancer Neoantigens. Cancer
Immunol Res, 2020. 8(3): p. 409-420.
[21]
Spranger,
S.; D. Dai; B. Horton, and T.F. Gajewski, Tumor-Residing Batf3 Dendritic Cells
Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy.
Cancer Cell, 2017. 31(5): p. 711-723 e4.
[22]
Jardim,
D.L.; A. Goodman; D. de Melo Gagliato, and R. Kurzrock, The Challenges of Tumor
Mutational Burden as an Immunotherapy Biomarker. Cancer Cell, 2021. 39(2): p.
154-173.
[23]
Pereira,
R.; J. Oliveira, and M. Sousa, Bioinformatics and Computational Tools for
Next-Generation Sequencing Analysis in Clinical Genetics. J Clin Med, 2020.
9(1).
[24]
Burley,
S.K.; C. Bhikadiya; C. Bi; S. Bittrich; L. Chen; G.V. Crichlow; C.H. Christie;
K. Dalenberg; L. Di Costanzo; J.M. Duarte; S. Dutta; Z. Feng; S. Ganesan; D.S.
Goodsell; S. Ghosh; R.K. Green; V. Guranović; D. Guzenko; B.P. Hudson;
Catherine L. Lawson; Y. Liang; R. Lowe; H. Namkoong; E. Peisach; I. Persikova;
C. Randle; A. Rose; Y. Rose; A. Sali; J. Segura; M. Sekharan; C. Shao; Y.-P.
Tao; M. Voigt; John D. Westbrook; J.Y. Young; C. Zardecki, and M. Zhuravleva,
RCSB Protein Data Bank: powerful new tools for exploring 3D structures of
biological macromolecules for basic and applied research and education in
fundamental biology, biomedicine, biotechnology, bioengineering and energy
sciences. Nucleic Acids Research, 2020. 49(D1): p. D437-D451.
[25]
Satam,
H.; K. Joshi; U. Mangrolia; S. Waghoo; G. Zaidi; S. Rawool; R.P. Thakare; S.
Banday; A.K. Mishra; G. Das, and S.K. Malonia, Next-Generation Sequencing
Technology: Current Trends and Advancements. Biology (Basel), 2023. 12(7).
[26]
Costain,
G.; R.D. Cohn; S.W. Scherer, and C.R. Marshall, Genome sequencing as a
diagnostic test. CMAJ, 2021. 193(42): p. E1626-E1629.
[27]
Logsdon,
G.A.; M.R. Vollger, and E.E. Eichler, Long-read human genome sequencing and its
applications. Nat Rev Genet, 2020. 21(10): p. 597-614.
[28]
Warr,
A.; C. Robert; D. Hume; A. Archibald; N. Deeb, and M. Watson, Exome Sequencing:
Current and Future Perspectives. G3 (Bethesda), 2015. 5(8): p. 1543-50.
[29]
Williams,
M.J.; A. Sottoriva, and T.A. Graham, Measuring Clonal Evolution in Cancer with
Genomics. Annu Rev Genomics Hum Genet, 2019. 20: p. 309-329.
[30]
Li,
H.; A. Coghlan; J. Ruan; L.J. Coin; J.-K. Heriche; L. Osmotherly; R. Li; T.
Liu; Z. Zhang, and L. Bolund, TreeFam: a curated database of phylogenetic trees
of animal gene families. Nucleic acids research, 2006. 34(suppl_1): p.
D572-D580.
[31]
Robbins,
P.F.; Y.-C. Lu; M. El-Gamil; Y.F. Li; C. Gross; J. Gartner; J.C. Lin; J.K.
Teer; P. Cliften; E. Tycksen; Y. Samuels, and S.A. Rosenberg, Mining exomic
sequencing data to identify mutated antigens recognized by adoptively
transferred tumor-reactive T cells. Nature Medicine, 2013. 19(6): p. 747-752.
[32]
De
Mattos-Arruda, L.; M. Vazquez; F. Finotello; R. Lepore; E. Porta; J. Hundal; P.
Amengual-Rigo; C.K.Y. Ng; A. Valencia; J. Carrillo; T.A. Chan; V. Guallar; N.
McGranahan; J. Blanco, and M. Griffith, Neoantigen prediction and computational
perspectives towards clinical benefit: recommendations from the ESMO Precision
Medicine Working Group. Annals of Oncology, 2020. 31(8): p. 978-990.
[33]
Hackl,
H.; P. Charoentong; F. Finotello, and Z. Trajanoski, Computational genomics
tools for dissecting tumour–immune cell interactions. Nature Reviews Genetics,
2016. 17(8): p. 441-458.
[34]
Li,
H.; B. Handsaker; A. Wysoker; T. Fennell; J. Ruan; N. Homer; G. Marth; G.
Abecasis; R. Durbin, and S. Genome Project Data Processing, The Sequence
Alignment/Map format and SAMtools. Bioinformatics, 2009. 25(16): p. 2078-9.
[35]
Koboldt,
D.C.; Q. Zhang; D.E. Larson; D. Shen; M.D. McLellan; L. Lin; C.A. Miller; E.R.
Mardis; L. Ding, and R.K. Wilson, VarScan 2: somatic mutation and copy number
alteration discovery in cancer by exome sequencing. Genome Res, 2012. 22(3): p.
568-76.
[36]
McKenna,
A.; M. Hanna; E. Banks; A. Sivachenko; K. Cibulskis; A. Kernytsky; K.
Garimella; D. Altshuler; S. Gabriel; M. Daly, and M.A. DePristo, The Genome
Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA
sequencing data. Genome Res, 2010. 20(9): p. 1297-303.
[37]
Cibulskis,
K.; M.S. Lawrence; S.L. Carter; A. Sivachenko; D. Jaffe; C. Sougnez; S.
Gabriel; M. Meyerson; E.S. Lander, and G. Getz, Sensitive detection of somatic
point mutations in impure and heterogeneous cancer samples. Nat Biotechnol,
2013. 31(3): p. 213-9.
[38]
Saunders,
C.T.; W.S. Wong; S. Swamy; J. Becq; L.J. Murray, and R.K. Cheetham, Strelka:
accurate somatic small-variant calling from sequenced tumor-normal sample
pairs. Bioinformatics, 2012. 28(14): p. 1811-7.
[39]
Garrison,
E. and G. Marth, Haplotype-based variant detection from short-read sequencing.
arXiv, 2016. 1207.
[40]
Rimmer,
A.; H. Phan; I. Mathieson; Z. Iqbal; S.R.F. Twigg; W.G.S. Consortium; A.O.M.
Wilkie; G. McVean, and G. Lunter, Integrating mapping-, assembly- and
haplotype-based approaches for calling variants in clinical sequencing
applications. Nat Genet, 2014. 46(8): p. 912-918.
[41]
Narzisi,
G.; A. Corvelo; K. Arora; E.A. Bergmann; M. Shah; R. Musunuri; A.-K. Emde; N.
Robine; V. Vacic, and M.C. Zody, Genome-wide somatic variant calling using
localized colored de Bruijn graphs. Communications Biology, 2018. 1(1): p. 20.
[42]
Poplin,
R.; P.-C. Chang; D. Alexander; S. Schwartz; T. Colthurst; A. Ku; D. Newburger;
J. Dijamco; N. Nguyen; P.T. Afshar; S.S. Gross; L. Dorfman; C.Y. McLean, and
M.A. DePristo, A universal SNP and small-indel variant caller using deep neural
networks. Nature Biotechnology, 2018. 36(10): p. 983-987.
[43]
Larson,
D.E.; C.C. Harris; K. Chen; D.C. Koboldt; T.E. Abbott; D.J. Dooling; T.J. Ley;
E.R. Mardis; R.K. Wilson, and L. Ding, SomaticSniper: identification of somatic
point mutations in whole genome sequencing data. Bioinformatics, 2012. 28(3):
p. 311-7.
[44]
Wilm,
A.; P.P. Aw; D. Bertrand; G.H. Yeo; S.H. Ong; C.H. Wong; C.C. Khor; R. Petric;
M.L. Hibberd, and N. Nagarajan, LoFreq: a sequence-quality aware,
ultra-sensitive variant caller for uncovering cell-population heterogeneity
from high-throughput sequencing datasets. Nucleic Acids Res, 2012. 40(22): p.
11189-201.
[45]
Skinner,
M.E.; A.V. Uzilov; L.D. Stein; C.J. Mungall, and I.H. Holmes, JBrowse: a
next-generation genome browser. Genome Res, 2009. 19(9): p. 1630-8.
[46]
Gusev,
A.; J.K. Lowe; M. Stoffel; M.J. Daly; D. Altshuler; J.L. Breslow; J.M.
Friedman, and I. Pe'er, Whole population, genome-wide mapping of hidden
relatedness. Genome research, 2009. 19(2): p. 318-326.
[47]
Lin,
Y.-L.; P.-C. Chang; C. Hsu; M.-Z. Hung; Y.-H. Chien; W.-L. Hwu; F. Lai, and
N.-C. Lee, Comparison of GATK and DeepVariant by trio sequencing. Scientific
Reports, 2022. 12(1): p. 1809.
[48]
Obradovic,
A.; L. Vlahos; P. Laise; J. Worley; X. Tan; A. Wang, and A. Califano, PISCES: A
pipeline for the systematic, protein activity-based analysis of single cell RNA
sequencing data. Biorxiv, 2021. 6: p. 22.
[49]
Freed,
D.; R. Pan, and R. Aldana, TNscope: accurate detection of somatic mutations
with haplotype-based variant candidate detection and machine learning
filtering. biorxiv, 2018: p. 250647.
[50]
Fang,
H.; E.A. Bergmann; K. Arora; V. Vacic; M.C. Zody; I. Iossifov; J.A. O'Rawe; Y.
Wu; L.T. Jimenez Barron; J. Rosenbaum; M. Ronemus; Y.-h. Lee; Z. Wang; E.
Dikoglu; V. Jobanputra; G.J. Lyon; M. Wigler; M.C. Schatz, and G. Narzisi,
Indel variant analysis of short-read sequencing data with Scalpel. Nature
Protocols, 2016. 11(12): p. 2529-2548.
[51]
Sahraeian,
S.M.E.; R. Liu; B. Lau; K. Podesta; M. Mohiyuddin, and H.Y. Lam, Deep
convolutional neural networks for accurate somatic mutation detection. Nature
communications, 2019. 10(1): p. 1041.
[52]
Cooke,
D.; G. Lunter, and D. Wedge, Accurate genotyping of single cells with Octopus.
2021.
[53]
Kim,
S.; K. Scheffler; A.L. Halpern; M.A. Bekritsky; E. Noh; M. Källberg; X. Chen;
Y. Kim; D. Beyter, and P. Krusche, Strelka2: fast and accurate calling of
germline and somatic variants. Nature methods, 2018. 15(8): p. 591-594.
[54]
Gehring,
J.S.; B. Fischer; M. Lawrence, and W. Huber, SomaticSignatures: inferring
mutational signatures from single-nucleotide variants. Bioinformatics, 2015.
31(22): p. 3673-3675.
[55]
Mayakonda,
A.; D.-C. Lin; Y. Assenov; C. Plass, and H.P. Koeffler, Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome research, 2018.
28(11): p. 1747-1756.
[56]
Rosenthal,
R.; N. McGranahan; J. Herrero; B.S. Taylor, and C. Swanton, DeconstructSigs:
delineating mutational processes in single tumors distinguishes DNA repair
deficiencies and patterns of carcinoma evolution. Genome biology, 2016. 17: p.
1-11.
[57]
Sahin,
U.; E. Derhovanessian; M. Miller; B.-P. Kloke; P. Simon; M. Löwer; V. Bukur;
A.D. Tadmor; U. Luxemburger; B. Schrörs; T. Omokoko; M. Vormehr; C. Albrecht;
A. Paruzynski; A.N. Kuhn; J. Buck; S. Heesch; K.H. Schreeb; F. Müller; I.
Ortseifer; I. Vogler; E. Godehardt; S. Attig; R. Rae; A. Breitkreuz; C.
Tolliver; M. Suchan; G. Martic; A. Hohberger; P. Sorn; J. Diekmann; J. Ciesla;
O. Waksmann; A.-K. Brück; M. Witt; M. Zillgen; A. Rothermel; B. Kasemann; D.
Langer; S. Bolte; M. Diken; S. Kreiter; R. Nemecek; C. Gebhardt; S. Grabbe; C.
Höller; J. Utikal; C. Huber; C. Loquai, and Ö. Türeci, Personalized RNA
mutanome vaccines mobilize poly-specific therapeutic immunity against cancer.
Nature, 2017. 547(7662): p. 222-226.
[58]
Keskin,
D.B.; A.J. Anandappa; J. Sun; I. Tirosh; N.D. Mathewson; S. Li; G. Oliveira; A.
Giobbie-Hurder; K. Felt; E. Gjini; S.A. Shukla; Z. Hu; L. Li; P.M. Le; R.L.
Allesoe; A.R. Richman; M.S. Kowalczyk; S. Abdelrahman; J.E. Geduldig; S.
Charbonneau; K. Pelton; J.B. Iorgulescu; L. Elagina; W. Zhang; O. Olive; C.
McCluskey; L.R. Olsen; J. Stevens; W.J. Lane; A.M. Salazar; H. Daley; P.Y. Wen;
E.A. Chiocca; M. Harden; N.J. Lennon; S. Gabriel; G. Getz; E.S. Lander; A.
Regev; J. Ritz; D. Neuberg; S.J. Rodig; K.L. Ligon; M.L. Suva; K.W.
Wucherpfennig; N. Hacohen; E.F. Fritsch; K.J. Livak; P.A. Ott; C.J. Wu, and
D.A. Reardon, Neoantigen vaccine generates intratumoral T cell responses in
phase Ib glioblastoma trial. Nature, 2019. 565(7738): p. 234-239.
[59]
Lin,
X.; S. Tang; Y. Guo; R. Tang; Z. Li; X. Pan; G. Chen; L. Qiu; X. Dong; L.
Zhang; X. Liu; Z. Cai, and B. Xie, Personalized neoantigen vaccine enhances the
therapeutic efficacy of bevacizumab and anti-PD-1 antibody in advanced
non-small cell lung cancer. Cancer Immunol Immunother, 2024. 73(2): p. 26.
[60]
Gevaert,
C.M.; M. Carman; B. Rosman; Y. Georgiadou, and R. Soden, Fairness and
accountability of AI in disaster risk management: Opportunities and challenges.
Patterns, 2021. 2(11).
[61]
Ahmadi,
A., Quantum Computing and Artificial Intelligence: The Synergy of Two
Revolutionary Technologies. Asian Journal of Electrical Sciences, 2023. 12(2):
p. 15-27.
[62]
Martonosi,
M. and M. Roetteler, Next steps in quantum computing: Computer science's role.
arXiv preprint arXiv:1903.10541, 2019.
[63]
Niraula,
D.; J. Jamaluddin; M.M. Matuszak; R.K.T. Haken, and I.E. Naqa, Quantum deep
reinforcement learning for clinical decision support in oncology: application
to adaptive radiotherapy. Scientific reports, 2021. 11(1): p. 23545.
[64]
Mustapha,
M.T.; I. Ozsahin, and D.U. Ozsahin, Chapter 2 - Convolution neural network and
deep learning, in Artificial Intelligence and Image Processing in Medical
Imaging, W.A. Zgallai and D.U. Ozsahin, Editors. 2024, Academic Press. p.
21-50.
[65]
Johnson,
K.B.; W.Q. Wei; D. Weeraratne; M.E. Frisse; K. Misulis; K. Rhee; J. Zhao, and
J.L. Snowdon, Precision Medicine, AI, and the Future of Personalized Health
Care. Clin Transl Sci, 2021. 14(1): p. 86-93.
[66]
Yandell,
M.D. and W.H. Majoros, Genomics and natural language processing. Nature Reviews
Genetics, 2002. 3(8): p. 601-610.
[67]
Rayhan,
A.; R. Kinzler, and R. Rayhan, NATURAL LANGUAGE PROCESSING: TRANSFORMING HOW
MACHINES UNDERSTAND HUMAN LANGUAGE. 2023.
[68]
Velupillai,
S.; H. Suominen; M. Liakata; A. Roberts; A.D. Shah; K. Morley; D. Osborn; J.
Hayes; R. Stewart; J. Downs; W. Chapman, and R. Dutta, Using clinical Natural
Language Processing for health outcomes research: Overview and actionable
suggestions for future advances. Journal of Biomedical Informatics, 2018. 88:
p. 11-19.
[69]
Linette,
G.P. and B.M. Carreno, Neoantigen Vaccines Pass the Immunogenicity Test. Trends
Mol Med, 2017. 23(10): p. 869-871.
[70]
Ott,
P.A.; Z. Hu; D.B. Keskin; S.A. Shukla; J. Sun; D.J. Bozym; W. Zhang; A. Luoma;
A. Giobbie-Hurder; L. Peter; C. Chen; O. Olive; T.A. Carter; S. Li; D.J. Lieb;
T. Eisenhaure; E. Gjini; J. Stevens; W.J. Lane; I. Javeri; K. Nellaiappan; A.M.
Salazar; H. Daley; M. Seaman; E.I. Buchbinder; C.H. Yoon; M. Harden; N. Lennon;
S. Gabriel; S.J. Rodig; D.H. Barouch; J.C. Aster; G. Getz; K. Wucherpfennig; D.
Neuberg; J. Ritz; E.S. Lander; E.F. Fritsch; N. Hacohen, and C.J. Wu, An
immunogenic personal neoantigen vaccine for patients with melanoma. Nature,
2017. 547(7662): p. 217-221.
[71]
Braiteh,
F.; P. LoRusso; A. Balmanoukian; S. Klempner; D.R. Camidge; M. Hellmann; M.
Gordon; J. Bendell; L. Mueller, and R. Sabado, Abstract CT169: A phase Ia study
to evaluate RO7198457, an individualized Neoantigen Specific immunoTherapy
(iNeST), in patients with locally advanced or metastatic solid tumors. Cancer
Research, 2020. 80(16_Supplement): p. CT169-CT169.
[72]
Sahin,
U.; P. Oehm; E. Derhovanessian; R.A. Jabulowsky; M. Vormehr; M. Gold; D.
Maurus; D. Schwarck-Kokarakis; A.N. Kuhn; T. Omokoko; L.M. Kranz; M. Diken; S.
Kreiter; H. Haas; S. Attig; R. Rae; K. Cuk; A. Kemmer-Brück; A. Breitkreuz; C.
Tolliver; J. Caspar; J. Quinkhardt; L. Hebich; M. Stein; A. Hohberger; I.
Vogler; I. Liebig; S. Renken; J. Sikorski; M. Leierer; V. Müller; H.
Mitzel-Rink; M. Miederer; C. Huber; S. Grabbe; J. Utikal; A. Pinter; R.
Kaufmann; J.C. Hassel; C. Loquai, and Ö. Türeci, An RNA vaccine drives immunity
in checkpoint-inhibitor-treated melanoma. Nature, 2020. 585(7823): p. 107-112.
[73]
Delord,
J.-P.; M.S. Block; C. Ottensmeier; G. Colon-Otero; C. Le Tourneau; A. Lalanne;
C. Jamet; O. Lantz; K.L. Knutson, and G. Lacoste, Phase 1 studies of
personalized neoantigen vaccine TG4050 in ovarian carcinoma (OC) and head and
neck squamous cell carcinoma (HNSCC). 2022, American Society of Clinical
Oncology.
[74]
Tran,
E.; P.F. Robbins, and S.A. Rosenberg, 'Final common pathway' of human cancer
immunotherapy: targeting random somatic mutations. Nature Immunology, 2017.
18(3): p. 255-262.