SEPARATION OF YTTRIUM Y(III) FROM RUBIDIUM RB(I) USING POLY HYDROXAMIC ACID

Aly A. A. Soliman, Khalid F. Hassan, Hossameldin G. Mohamedbakr, Mohamed S. Thabet, Zeinhom H. Mohamed, Medhat M. El-Moselhy

Keywords: PHA Resin, Polyacrylamide, Gamma Rays, Separation, Y, Rb

The polyhydroxamic acid PHA performed better when used as a simulation mode for the single-step separation of 86 Y from Rb. While Polyacrylamide (PAAm) was modified with hydroxylamine to create (PHA) resin. Acrylamide monomers were polymerized using a ?- ray method to create polyacrylamide. PHA was utilized for the way to simulate obtaining 86, 87, and 88Y from Rb. In relationship to pH, the yttrium and rubidium adsorption behaviors on the produced PHA under various environments, including, acetate and citrate buffer solutions as well as HCl, have been investigated. In the present investigation, we found that Y(III) and Rb(I) were separated using PAH resin at pH 5.5, where Rb passed through the column while Y was retained. Y was totally eluted using 2 M HCl. 

[1] Agarwal, A., Bhardwaj, M. K., Rizvi, I. A., & Chaubey, A. K. (2003). Measurement and analysis of excitation functions for alpha induced reactions with rubidium. Retrieved from https://nopr.niscpr.res.in/handle/123456789/25254

[2] Baren, M. H., Ibrahim, S. A., Al-Rooqi, M. M., Ahmed, S. A., El-Gamil, M. M., & Hekal, H. A. (2023). A new class of anticancer activity with computational studies for a novel bioactive aminophosphonates based on pyrazole moiety. Scientific Reports, 13(1), 14680.

[3] Cao, X., Zhou, C., Wang, S., & Man, R. (2020). Adsorption Properties for La (III), Ce (III), and Y (III) with Poly (6-acryloylamino-hexyl hydroxamic acid) Resin. Polymers, 13(1), 3.

[4] Garmestani, K., Milenic, D. E., Plascjak, P. S., & Brechbiel, M. W. (2002). A new and convenient method for purification of 86Y using a Sr (II) selective resin and comparison of biodistribution of 86Y and 111In labeled HerceptinTM. Nuclear Medicine and Biology, 29(5), 599–606.

[5] Hassan, K. F., Kandil, S. A., Abdel-Aziz, H. M., & Siyam, T. (2011). Preparation of poly (hydroxamic acid) for separation of Zr/Y, Sr system. Chromatography Research International, 2011. Retrieved from https://downloads.hindawi.com/archive/2011/638090.pdf

[6] Hosseini, S. H. (2011). Detection of arsenic agents by polyhydroxamic acid. Journal of Applied Polymer Science, 121(4), 2338–2343. https://doi.org/10.1002/app.30541

[7] Johann, T., Keth, J., Bros, M., & Frey, H. (2019). A general concept for the introduction of hydroxamic acids into polymers. Chemical Science, 10(29), 7009–7022.

[8] Kandil, S. A., Spahn, I., Scholten, B., Saleh, Z. A., Saad, S. M. M., Coenen, H. H., & Qaim, S. M. (2007). Excitation functions of (α, xn) reactions on natRb and natSr from threshold up to 26 MeV: Possibility of production of 87Y, 88Y and 89Zr. Applied Radiation and Isotopes, 65(5), 561–568.

[9] Kandil, S., Scholten, B., Hassan, K., Hanafi, H., & Qaim, S. (2009). A comparative study on the separation of radioyttrium from Sr-and Rb-targets via ion-exchange and solvent extraction techniques, with special reference to the production of no-carrier-added 86 Y, 87 Y and 88 Y using a cyclotron. Journal of Radioanalytical and Nuclear Chemistry, 279(3), 823–832.

[10] Kettern, K., Linse, K.-H., Spellerberg, S., Coenen, H. H., & Qaim, S. M. (2002). Radiochemical studies relevant to the production of 86 Y and 88 Y at a small-sized cyclotron. Radiochimica Acta, 90(12), 845–849. https://doi.org/10.1524/ract.2002.90.12_2002.845

[11] Khodadadi, R., Fakhri, S. A., & Entezami, A. A. (1995). Poly (hydroxamic acid) chelating resin: The synthesis and uses. Iranian Journal ofPo4uler Science and Technology Vol, 4(4), 11995.

[12] Khorshidi, A. (2023).Nano Yttrium-90 and Rhenium-188 production through medium medical cyclotron and research reactor for therapeutic usages: A Simulation study, Nuclear   Engineering and Technology, 55, 5, , 1871-1877, https://doi.org/10.1016/j.net.2023.02.013


[13] Lee, T. S., & Hong, S. (1994). Synthesis of porous poly(hydroxamic acid) from poly(ethyl acrylate-co-divinylbenzene). Polymer Bulletin, 32(3), 273–279. https://doi.org/10.1007/BF00308537

[14] Lee, T. S., Jeon, D. W., Kim, J. K., & Hong, S. I. (2001). Formation of metal complex in a poly(hydroxamic acid) resin bead. Fibers and Polymers, 2(1), 13–17. https://doi.org/10.1007/BF02875221

[15] Li, C.X.; Zhong, H.; Wang, S.; Xue, J.R.; Zhang, Z.Y. ( 2015)Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. J. Ind. Eng. Chem., 23, 344–352.


[16] Li, Z., & Yamamoto, H. (2013). Hydroxamic Acids in Asymmetric Synthesis. Accounts of Chemical Research, 46(2), 506–518. https://doi.org/10.1021/ar300216r

[17] Lutfor, M. R., Sidik, S., Yunus, W. W., Ab Rahman, M. Z., Mansoor, A., & Jelas, H. (2001). Preparation and swelling of polymeric absorbent containing hydroxamic acid group from polymer grafted sago starch. Carbohydrate Polymers, 45(1), 95–100.

[18] Mahesh, P., Akshinthala, P., Katari, N. K., Gupta, L. K., Panwar, D., Sharma, M. K., … Gundla, R. (2023). Antiproliferative Activity of New Pyrazole-4-sulfonamide Derivatives: Synthesis and Biological Evaluation. ACS Omega, 8(29), 25698–25709. https://doi.org/10.1021/acsomega.2c07539

[19] Mantzanidou, M., Pontiki, E., & Hadjipavlou-Litina, D. (2021). Pyrazoles and pyrazolines as anti-inflammatory agents. Molecules, 26(11), 3439.

[20] Mitra, A., Chakraborty, A., Gaikwad, S., Tawate, M., Upadhye, T., Lad, S., Sahoo, S., Jagesia, P., Parghane, R., Menon, S., Basu, S., Dhami, P., and Banerjee, S., (2021). On the Separation of Yttrium-90 from High-Level Liquid Waste: Purification to Clinical-Grade Radiochemical Precursor, Clinical Translation in Formulation of 90Y-DOTATATE Patient Dose, Cancer Biotherapy & Radiopharmaceuticals, 36, 2. 

[21] https://doi.org/10.1089/cbr.2020.4092


[22] Mzinyane, N. N., Ofomaja, A. E., & Naidoo, E. B. (2021). Synthesis of poly (hydroxamic acid) ligand for removal of Cu (II) and Fe (II) ions in a single component aqueous solution. South African Journal of Chemical Engineering, 35, 137–152. https://doi.org/10.1016/j.sajce.2020.09.002

[23] Neagu, V., Bunia, I., Plesca, I., & Popa, M. (2003). Synthesis of new chelating ion exchange resin with hydroxamic and amidoxime groups and study of its metal binding property. Journal of Applied Polymer Science, 88(13), 2956–2962. https://doi.org/10.1002/app.12062

[24] Pal, S., Chattopadhyay, S., Das, M. K., & Sudersanan, M. (2006). Production and separation of no-carrier-added radioactive tracers of yttrium, strontium and rubidium from heavy-ion irradiated germanium target: Applicability to the standardization of a separation technique for production of positron-emitting radionuclide 86Y. Applied Radiation and Isotopes, 64(12), 1521–1527.

[25] Park, L. S., Szajek, L. P., Wong, K. J., Plascjak, P. S., Garmestani, K., Googins, S., … Paik, C. H. (2004). Semi-automated 86Y purification using a three-column system. Nuclear Medicine and Biology, 31(2), 297–301.

[26] Qaim, S. M. (2011). Cyclotron production of medical radionuclides. Handbook of Nuclear Chemistry, 1903.

[27] Rösch, F., Qaim, S. M., & Stöcklin, G. (1993a). Nuclear Data Relevant to the Production of the Positron Emitting Radioisotope 86 Y via the 86 Sr(p,n)- and nat Rb( 3 He,xn)-Processes. Ract, 61(1), 1–8. https://doi.org/10.1524/ract.1993.61.1.1

[28] Rösch, F., Qaim, S. M., & Stöcklin, G. (1993b). Production of the positron emitting radioisotope 86Y for nuclear medical application. Applied Radiation and Isotopes, 44(4), 677–681.

[29] Saraydin, D., Isikver, Y., & Sahiner, N. (2001). Uranyl ion binding properties of poly(hydroxamic acid) hydrogels. Polymer Bulletin, 47(1), 81–89. https://doi.org/10.1007/s002890170024

[30] Singha, M., & Pal, S. (2020). Removal of toxic metals using a novel PHA resin-fixed bed column performance study. Journal of Radioanalytical and Nuclear Chemistry, 326(2), 1193–1198. https://doi.org/10.1007/s10967-020-07407-y

[31] Siyam, T. (2001). Development of acrylamide polymers for the treatment of waste water. Designed Monomers and Polymers, 4(2), 107–168. https://doi.org/10.1163/156855500300203377

[32] Tompkins, E. R., & Mayer, S. W. (1947). Ion Exchange as a Separations Method. III. Equilibrium Studies of the Reactions of Rare Earth Complexes with Synthetic Ion Exchange Resins 1. Journal of the American Chemical Society, 69(11), 2859–2865. https://doi.org/10.1021/ja01203a068

[33] Vértes, A., Nagy, S., & Klencsár, Z. (2003). Handbook of nuclear chemistry (Vol. 2). Springer Science & Business Media. Retrieved from https://books.google.com/books?hl=ar&lr=&id=fvoId6Fv5xQC&oi=fnd&pg=PR9&dq=14.%09Vertes+A,+Nagy+S,+Klencsarn+Z,+Kluwer,+Handbook+of+nuclear+chemistry,+volumes+1%E2%80%935,+Academic+Publishers,+Dordrecht,+47+(2003).&ots=rTfqld7evF&sig=IMzXVu-5ivqBi6CG8tfoWXi6qrU

[34] Yang, K.Y.; Xing, J.C.; Xu, P.P.; Chang, J.M.; Zhang, Q.F.; Usman, K.M. )2020( Activated carbon microsphere from sodium lignosulfonate for Cr(VI) adsorption evaluation in wastewater treatment. Polymers, 12, 236.