[1] Agarwal, A., Bhardwaj, M. K., Rizvi, I. A., & Chaubey, A. K. (2003). Measurement and analysis of excitation functions for alpha induced reactions with rubidium. Retrieved from https://nopr.niscpr.res.in/handle/123456789/25254
[2] Baren, M. H., Ibrahim, S. A., Al-Rooqi, M. M., Ahmed, S. A., El-Gamil, M. M., & Hekal, H. A. (2023). A new class of anticancer activity with computational studies for a novel bioactive aminophosphonates based on pyrazole moiety. Scientific Reports, 13(1), 14680.
[3] Cao, X., Zhou, C., Wang, S., & Man, R. (2020). Adsorption Properties for La (III), Ce (III), and Y (III) with Poly (6-acryloylamino-hexyl hydroxamic acid) Resin. Polymers, 13(1), 3.
[4] Garmestani, K., Milenic, D. E., Plascjak, P. S., & Brechbiel, M. W. (2002). A new and convenient method for purification of 86Y using a Sr (II) selective resin and comparison of biodistribution of 86Y and 111In labeled HerceptinTM. Nuclear Medicine and Biology, 29(5), 599–606.
[5] Hassan, K. F., Kandil, S. A., Abdel-Aziz, H. M., & Siyam, T. (2011). Preparation of poly (hydroxamic acid) for separation of Zr/Y, Sr system. Chromatography Research International, 2011. Retrieved from https://downloads.hindawi.com/archive/2011/638090.pdf
[6] Hosseini, S. H. (2011). Detection of arsenic agents by polyhydroxamic acid. Journal of Applied Polymer Science, 121(4), 2338–2343. https://doi.org/10.1002/app.30541
[7] Johann, T., Keth, J., Bros, M., & Frey, H. (2019). A general concept for the introduction of hydroxamic acids into polymers. Chemical Science, 10(29), 7009–7022.
[8] Kandil, S. A., Spahn, I., Scholten, B., Saleh, Z. A., Saad, S. M. M., Coenen, H. H., & Qaim, S. M. (2007). Excitation functions of (α, xn) reactions on natRb and natSr from threshold up to 26 MeV: Possibility of production of 87Y, 88Y and 89Zr. Applied Radiation and Isotopes, 65(5), 561–568.
[9] Kandil, S., Scholten, B., Hassan, K., Hanafi, H., & Qaim, S. (2009). A comparative study on the separation of radioyttrium from Sr-and Rb-targets via ion-exchange and solvent extraction techniques, with special reference to the production of no-carrier-added 86 Y, 87 Y and 88 Y using a cyclotron. Journal of Radioanalytical and Nuclear Chemistry, 279(3), 823–832.
[10] Kettern, K., Linse, K.-H., Spellerberg, S., Coenen, H. H., & Qaim, S. M. (2002). Radiochemical studies relevant to the production of 86 Y and 88 Y at a small-sized cyclotron. Radiochimica Acta, 90(12), 845–849. https://doi.org/10.1524/ract.2002.90.12_2002.845
[11] Khodadadi, R., Fakhri, S. A., & Entezami, A. A. (1995). Poly (hydroxamic acid) chelating resin: The synthesis and uses. Iranian Journal ofPo4uler Science and Technology Vol, 4(4), 11995.
[12] Khorshidi, A. (2023).Nano Yttrium-90 and Rhenium-188 production through medium medical cyclotron and research reactor for therapeutic usages: A Simulation study, Nuclear Engineering and Technology, 55, 5, , 1871-1877, https://doi.org/10.1016/j.net.2023.02.013
[13] Lee, T. S., & Hong, S. (1994). Synthesis of porous poly(hydroxamic acid) from poly(ethyl acrylate-co-divinylbenzene). Polymer Bulletin, 32(3), 273–279. https://doi.org/10.1007/BF00308537
[14] Lee, T. S., Jeon, D. W., Kim, J. K., & Hong, S. I. (2001). Formation of metal complex in a poly(hydroxamic acid) resin bead. Fibers and Polymers, 2(1), 13–17. https://doi.org/10.1007/BF02875221
[15] Li, C.X.; Zhong, H.; Wang, S.; Xue, J.R.; Zhang, Z.Y. ( 2015)Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. J. Ind. Eng. Chem., 23, 344–352.
[16] Li, Z., & Yamamoto, H. (2013). Hydroxamic Acids in Asymmetric Synthesis. Accounts of Chemical Research, 46(2), 506–518. https://doi.org/10.1021/ar300216r
[17] Lutfor, M. R., Sidik, S., Yunus, W. W., Ab Rahman, M. Z., Mansoor, A., & Jelas, H. (2001). Preparation and swelling of polymeric absorbent containing hydroxamic acid group from polymer grafted sago starch. Carbohydrate Polymers, 45(1), 95–100.
[18] Mahesh, P., Akshinthala, P., Katari, N. K., Gupta, L. K., Panwar, D., Sharma, M. K., … Gundla, R. (2023). Antiproliferative Activity of New Pyrazole-4-sulfonamide Derivatives: Synthesis and Biological Evaluation. ACS Omega, 8(29), 25698–25709. https://doi.org/10.1021/acsomega.2c07539
[19] Mantzanidou, M., Pontiki, E., & Hadjipavlou-Litina, D. (2021). Pyrazoles and pyrazolines as anti-inflammatory agents. Molecules, 26(11), 3439.
[20] Mitra, A., Chakraborty, A., Gaikwad, S., Tawate, M., Upadhye, T., Lad, S., Sahoo, S., Jagesia, P., Parghane, R., Menon, S., Basu, S., Dhami, P., and Banerjee, S., (2021). On the Separation of Yttrium-90 from High-Level Liquid Waste: Purification to Clinical-Grade Radiochemical Precursor, Clinical Translation in Formulation of 90Y-DOTATATE Patient Dose, Cancer Biotherapy & Radiopharmaceuticals, 36, 2.
[21] https://doi.org/10.1089/cbr.2020.4092
[22] Mzinyane, N. N., Ofomaja, A. E., & Naidoo, E. B. (2021). Synthesis of poly (hydroxamic acid) ligand for removal of Cu (II) and Fe (II) ions in a single component aqueous solution. South African Journal of Chemical Engineering, 35, 137–152. https://doi.org/10.1016/j.sajce.2020.09.002
[23] Neagu, V., Bunia, I., Plesca, I., & Popa, M. (2003). Synthesis of new chelating ion exchange resin with hydroxamic and amidoxime groups and study of its metal binding property. Journal of Applied Polymer Science, 88(13), 2956–2962. https://doi.org/10.1002/app.12062
[24] Pal, S., Chattopadhyay, S., Das, M. K., & Sudersanan, M. (2006). Production and separation of no-carrier-added radioactive tracers of yttrium, strontium and rubidium from heavy-ion irradiated germanium target: Applicability to the standardization of a separation technique for production of positron-emitting radionuclide 86Y. Applied Radiation and Isotopes, 64(12), 1521–1527.
[25] Park, L. S., Szajek, L. P., Wong, K. J., Plascjak, P. S., Garmestani, K., Googins, S., … Paik, C. H. (2004). Semi-automated 86Y purification using a three-column system. Nuclear Medicine and Biology, 31(2), 297–301.
[26] Qaim, S. M. (2011). Cyclotron production of medical radionuclides. Handbook of Nuclear Chemistry, 1903.
[27] Rösch, F., Qaim, S. M., & Stöcklin, G. (1993a). Nuclear Data Relevant to the Production of the Positron Emitting Radioisotope 86 Y via the 86 Sr(p,n)- and nat Rb( 3 He,xn)-Processes. Ract, 61(1), 1–8. https://doi.org/10.1524/ract.1993.61.1.1
[28] Rösch, F., Qaim, S. M., & Stöcklin, G. (1993b). Production of the positron emitting radioisotope 86Y for nuclear medical application. Applied Radiation and Isotopes, 44(4), 677–681.
[29] Saraydin, D., Isikver, Y., & Sahiner, N. (2001). Uranyl ion binding properties of poly(hydroxamic acid) hydrogels. Polymer Bulletin, 47(1), 81–89. https://doi.org/10.1007/s002890170024
[30] Singha, M., & Pal, S. (2020). Removal of toxic metals using a novel PHA resin-fixed bed column performance study. Journal of Radioanalytical and Nuclear Chemistry, 326(2), 1193–1198. https://doi.org/10.1007/s10967-020-07407-y
[31] Siyam, T. (2001). Development of acrylamide polymers for the treatment of waste water. Designed Monomers and Polymers, 4(2), 107–168. https://doi.org/10.1163/156855500300203377
[32] Tompkins, E. R., & Mayer, S. W. (1947). Ion Exchange as a Separations Method. III. Equilibrium Studies of the Reactions of Rare Earth Complexes with Synthetic Ion Exchange Resins 1. Journal of the American Chemical Society, 69(11), 2859–2865. https://doi.org/10.1021/ja01203a068
[33] Vértes, A., Nagy, S., & Klencsár, Z. (2003). Handbook of nuclear chemistry (Vol. 2). Springer Science & Business Media. Retrieved from https://books.google.com/books?hl=ar&lr=&id=fvoId6Fv5xQC&oi=fnd&pg=PR9&dq=14.%09Vertes+A,+Nagy+S,+Klencsarn+Z,+Kluwer,+Handbook+of+nuclear+chemistry,+volumes+1%E2%80%935,+Academic+Publishers,+Dordrecht,+47+(2003).&ots=rTfqld7evF&sig=IMzXVu-5ivqBi6CG8tfoWXi6qrU
[34] Yang, K.Y.; Xing, J.C.; Xu, P.P.; Chang, J.M.; Zhang, Q.F.; Usman, K.M. )2020( Activated carbon microsphere from sodium lignosulfonate for Cr(VI) adsorption evaluation in wastewater treatment. Polymers, 12, 236.