Computer simulation for optimizing mining waste recycling in cement raw meals 


D. Belkheiri

Keywords: Cement raw, Mining waste, Recycling, Numerical simulation, Environmental impact.

Cement production offers the opportunity to recycle and valorize certain mining wastes, containing the main cement oxides. This study presents a Python program for finding the optimum composition of a limestone-clay cementitious mixture in which we recycle mining waste (LCy%Wx%) to produce a Portland clinker as close as possible to a clinker taken as a reference (RR). The aim of this Python program is to determine the percentages of limestone, clay and waste in the LCW, by equating eleven of its characteristics to those of the reference raw meal; these characteristics encompass the four oxide compositions (CaO, SiO2, Fe2O3, Al2O3), three moduli (LSF, SR, AF) and the proportions of the clinker's four main phases. This program allows the user to select limestone-clay-waste raw materials and a target reference with its eleven parameters. The script execution generates  eleven solutions, stored in files as numerical tables and graphs. These results facilitate the selection of optimum percentages of cementitious raw materials. Ultimately, this recycling process offers both economic and ecological benefits.

[1]     S. Kalisz, K. Kibort, J. Mioduska, M. Lieder, A. Małachow, Waste management in the mining industry of metals ores, coal, oil and natural gas, A review. Journal of Environmental Management.Volume 304, 15 February 2022, 114239.

[2]     J. A. Entwistle, A. S. Hursthouse, M. Reis,  A. G. Stewart, (2019), Metalliferous Mine Dust: Human Health Impacts and the Potential Determinants of Disease in Mining Communities, Current Pollution Reports 5:pp67–83 https://doi.org/10.1007/s40726-019-00108-5.

[3]     T. Karachaliou, V. Protonotarios,D. Kaliampakos, M. Menegaki,(2016), Using Risk Assessment and Management Approaches to Develop Cost-Effective and Sustainable Mine Waste Management Strategies Recycling, 1(3), pp328-342.

[4]     L. Li,Z. Yimin, B. Shenxu, and C. Tiejun, (2016), Utilization of Iron Ore Tailings as Raw Material for Portland Cement Clinker Production, Hindawi Publishing Corporation Advances in Materials Science and Engineering Volume, Article ID 1596047, 6 pages http://dx.doi.org/10.1155/2016/1596047

[5]      M. S. Imbabi, C. Carrigan, S. McKenna, (2012), Trends and developments in green cement and concrete technology, International Journal of Sustainable Built Environment pp194-216

[6]     M. Frías, G. Rosario, G. ; R. Vigil de la Villa and M. R.  Sagrario, (2016) .Coal Mining Waste as a Future Eco-Efficient Supplementary Cementing Material : Scientific Aspects. Recycling 1(2), pp232-241

[7]     P. E. Tsakiridis,S. Agatzini-Leonardou, P. Oustadakis, (2004), Red mud addition in the raw meal for the production of Portland cement clinker, Journal of Hazardous Materials B116 pp103-110.

[8]     Y. Taha, (2017),  Valorisation des rejets miniers dans la fabrication de briques cuites : évaluations technique et environnementale. 0.13140/RG.2.2.19573.78565.

[9]     S. Singh, L. B. Sukla,S. K. Goyal, (2020), Mine waste & circular economy. Materials Today:Proceedings.Vol30,Part2, pp332-339. https://doi.org/10.1016/j.matpr.2020.01.616.

[10]  T. K. Maedeh,E. Mansour, C. Glen, and G. Artem, (2019), Re-Thinking Mining Waste through an Integrative Approach Led by Circular Economy Aspirations, Minerals9, 286; doi:10.3390/min9050286.

[11]  A. Atmaca, S. Yumruta¸ Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry, Appl. Therm. Eng. 2014, 66, pp435–444.

[12]  UN environment, (2017), Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry: p 9,13.

[13]  S. P. Dunuweera, R. M. G. Rajapakse, (2018), Cement Types Composition, Uses and Advantages of Nanocement Environmental Impact on Cement Production and Possible Solutions, Advances in Materials Science and Engineering Volume, Article ID 4158682.

[14]  7th International Congress on the Chemistry of Cement, Volume I, principal reports, p14, PARIS 1980.

[15]  J. Kim, S. Tae, R. Kim, (2018), Theoretical Study on the Production of Environment-Friendly Recycled Cement Using Inorganic Construction Wastes as Secondary Materials in South Korea Sustainability, 4449. https://doi.org/10.3390/su10124449.

[16]  A. Franco,A. R. Diaz,  (2008), The future challenges for ‘‘cleancoaltechnologies’’: Joining efficiency increaseand pollutant emission control, in Energy DOI: 10.1016/j energy.2008.09.012 ,  https://www.researchgate.net/publication/222549604.

[17]  Y. Jianglong, M. Fanrui,L. Xianchun, T. Arash,(2012), Power generation from coal gangue in China: Current status and development, Advanced Materials Research Vols. 550-553 p 443-446.

[18]  L. Yu, Y. Yuan, L. Xiaoming, S. Henghu, N. Wen, (2013), Improvement on pozzolanic reactivity of coal gangue by integrated thermal and chemical activation, Fuel Vol 109, Pages 527-533.

[19]  S. X. Zhou, (2009), Study on the reaction degree of calcined coal gangue powder in blended cement by selective solution method. Procedia Earth and Planetary,  The 6th International Conference on Mining Science & Technology, pp 634-639.

[20]  S. Chhaiba, M. T. Blanco-Varela, M. Teresa, A. Diouri, (2018), Moroccan oil shale and coal waste as alternative raw materials in Portland cement clinker manufacture Clinkerization reactions and clinker characterization, Materiales de Construcción, vol. 68, no 331, p. 166.  https://doi.org/10.3989/mc.2018.07017.

[21]  D. Belkheiri, A. Diouri, M. Taibi, O. Sassi, J. Aride, (2015), Recycling of Moroccan coal gangue in the elaboration of a Portland clinker, J. Mater. Environ. Sci. 6 (6) 1570-1577 Belkheiri et al. ISSN: 2028-2508 CODEN: JMESCN.

[22]  R. Moussaoui, S. EL Moudni EL Alami,H. Aouraghe H. (Sept 2019), Characterization  of  the  Zellidja Lead Smelter Slag (Eastern Morocco) in order to their Valorization in Civil Engineering, Journal of Ecological Engineering, Volume 20, Issue 8, pages 71–81 https://doi.org/10.12911/22998993/110812.

[23]  R. Hakkou, M. Benzaazoua; B. Bussière, (2016), Valorization of phosphate waste rocks and sludge from the Moroccan phosphate mines: Challenges and perspectives. Procedia Engineering 138 110 – 118.

[24]  S. Oumnih, N. Bekkouch, E. Gharibi,N. Fage, K. Elhamouti, M. El Ouahabi, (2019). Phosphogypsum waste as additives to lime stabilization of bentonite, Sustainable Environment Research 29 -35. https://doi.org/10.1186/s42834-019-0038-z.

[25]  R. Hattaf, M. Benchikhi, A Azzouzi, R. El Ouatib, M. Gomina, A. Samdi, R. Moussa,  (2021), Preparation of Cement Clinker from Geopolymer-BasedWastes, Materials, 14, 6534. https://doi.org/10.3390/ma14216534

[26]  S. Nfissi, Y. Zerhouni, M. Benzaazoua, S. Alikouss, A Chtaini, R. Hakkou, M. Samir,  (Nov 2011), Caracterisation of the tailings of abandoned mines of Kettara and Roc Blanc (Jebilet central, Morocco), Ann. Soc. Géol. du Nord.T. 18 (2ème série), p. 43-53.

[27]   M. Achik, A. Oulmekki, M. Ijjaali, H. Benmoussa, N. EL Moudden, S. EL Khattabi, R. EL Khallabi, F. Z. Ahjyyaj, G. Álvaro Gonzalez, F. Rivera Guitian, (2017). Physicochemical characterization of an industrial waste: A case study of the pyrrhotite ash from south west of Morocco, JMES Vol 8, Issue 8, Pages 2738-2746, http://www.jmaterenvironsci.com

[28]  H. F. Taylor,  (1997). Cement chemistry (Vol. 2, p. 459), London: Thomas Telford.

[29]  P.Hewlett, , M. Liska, (Eds.), (2019), Lea's chemistry of cement and concrete, Butterworth-Heinemann.

[30]  S-H. Shim, T- H. Lee, S- J. Yang, N. B. M. Noor, J- H- J.  Kim, (2021). Calculation of Cement Composition Using a New Model Compared to the Bogue Model. Materials 14. 4663. https://doi.org/10.3390/ma14164663.

[31]  F. Sorrentino, (2011), Chemistry and engineering of the production process: State of the art, Cement and Concrete Research 41, 616–623.

[32]  B. J. R. Mungyeko Bisulandu, F. Marias, (2019), Modélisation de la chimie du clinker et de l'ingénierie du processus de fabrication du ciment : État de l'art [ Modeling of cement clinker chemistry and engineering of cement manufacturing process : State of the art ]. International Journal of Innovation and Applied Studies. 528-551.

[33]  B. Kohlhaas, O. Labahn, Cement Engineers Handbook, 6th edition, Bauverlag GMBH, Berlin, 1983.

[34]  Y. Tao, W. Zhang, D. Shang, Z. Xia, N. Li, W.Y. Ching, F. Wang, S. Hu, Comprehending the occupying preference of manganese substitution in crystalline cement clinker phases: A theoretical study, Cem. Concr. Res. 109 (2018) 19–29. doi:10.1016/j.cemconres.2018.04.003.

[35]  E. Fundal, (1979), World Cement Technol. 10..

[36]  M. A. Aldieb, H. G. Ibrahim, Variation of Feed Chemical Composition and Its Effect on Clinker Formation–Simulation Process Proceedings of the World Congress on Engineering and Computer Science 2010, Vol II WCECS 2010, Oct 20-22, 2010, San Francisco, USA.

[37]  F. Osawa, N. Shirahama, M. Yamashita, H. Tanaka H, (2015). Effects of phosphorus oxide in clinker and cement on the properties of high content belt cement, Cement Science and Concrete Technology. VL 69. P 23-28. 

[38]  Y. Huang, J. Qian, X. Kang, J. Yu, Y. Fan, Y. Dang, W. Zhang, S. Wang, (2019). Belite-calcium sulfoaluminate cement prepared with phosphogypsum: Influence of P2O5 and F on the clinker formation and cement performances, Construction and Building Materials. VL203, p432 442. 

[39]  Y. Taha, A. Elghali, R. Hakkou, M. Benzaazoua, (2021), Towards Zero Solid Waste in the Sedimentary Phosphate Industry: Challenges and Opportunities, Minerals 1250, https://doi.org/10.3390/ min11111250.