[1]
S. Kalisz, K. Kibort, J. Mioduska, M. Lieder, A. Małachow, Waste
management in the mining industry of metals ores, coal, oil and natural gas, A
review. Journal of Environmental Management.Volume 304, 15
February 2022, 114239.
[2]
J. A. Entwistle,
A. S. Hursthouse, M. Reis, A. G. Stewart,
(2019), Metalliferous Mine Dust: Human Health Impacts and the Potential
Determinants of Disease in Mining Communities, Current Pollution Reports 5:pp67–83
https://doi.org/10.1007/s40726-019-00108-5.
[3]
T. Karachaliou, V. Protonotarios,D.
Kaliampakos, M. Menegaki,(2016), Using Risk Assessment and
Management Approaches to Develop Cost-Effective and Sustainable Mine Waste
Management Strategies Recycling, 1(3), pp328-342.
[4] L. Li,Z. Yimin, B. Shenxu, and C. Tiejun, (2016),
Utilization of Iron Ore Tailings as Raw Material for Portland Cement Clinker
Production, Hindawi Publishing Corporation Advances in Materials Science and
Engineering Volume, Article ID 1596047, 6 pages http://dx.doi.org/10.1155/2016/1596047
[5]
M. S. Imbabi, C. Carrigan, S. McKenna, (2012), Trends and developments in
green cement and concrete technology, International Journal of Sustainable
Built Environment pp194-216
[6]
M. Frías, G. Rosario, G. ; R. Vigil de
la Villa and M. R. Sagrario, (2016) .Coal Mining Waste as a Future Eco-Efficient Supplementary Cementing
Material : Scientific Aspects. Recycling 1(2), pp232-241
[7]
P. E. Tsakiridis,S.
Agatzini-Leonardou, P. Oustadakis, (2004), Red mud addition in the raw meal for
the production of Portland cement clinker, Journal of Hazardous Materials B116 pp103-110.
[8]
Y. Taha, (2017), Valorisation des rejets miniers dans la
fabrication de briques cuites : évaluations technique et environnementale.
0.13140/RG.2.2.19573.78565.
[9] S. Singh, L. B. Sukla,S. K. Goyal,
(2020), Mine waste & circular economy. Materials Today:Proceedings.Vol30,Part2, pp332-339. https://doi.org/10.1016/j.matpr.2020.01.616.
[10] T. K. Maedeh,E. Mansour, C. Glen, and G. Artem,
(2019), Re-Thinking Mining Waste through an Integrative Approach Led by
Circular Economy Aspirations, Minerals9, 286; doi:10.3390/min9050286.
[11] A. Atmaca, S.
Yumruta¸ Analysis of the parameters affecting energy consumption of a rotary
kiln in cement industry, Appl. Therm. Eng. 2014, 66, pp435–444.
[12] UN
environment, (2017), Eco-efficient cements: Potential economically viable
solutions for a low-CO2 cement-based materials industry: p 9,13.
[13] S. P. Dunuweera, R. M. G. Rajapakse, (2018),
Cement Types Composition, Uses and Advantages of Nanocement Environmental
Impact on Cement Production and Possible Solutions, Advances in Materials
Science and Engineering Volume, Article ID 4158682.
[14] 7th International Congress on the Chemistry of
Cement, Volume I, principal reports, p14, PARIS 1980.
[15] J. Kim, S. Tae, R.
Kim, (2018), Theoretical Study on the Production of Environment-Friendly
Recycled Cement Using Inorganic Construction Wastes as Secondary Materials in
South Korea Sustainability, 4449. https://doi.org/10.3390/su10124449.
[16] A. Franco,A. R. Diaz, (2008), The future challenges for
‘‘cleancoaltechnologies’’: Joining efficiency increaseand pollutant emission
control, in Energy DOI: 10.1016/j energy.2008.09.012 , https://www.researchgate.net/publication/222549604.
[17] Y. Jianglong, M. Fanrui,L.
Xianchun, T. Arash,(2012), Power generation from coal gangue in China: Current
status and development, Advanced Materials Research Vols. 550-553 p 443-446.
[18] L. Yu, Y. Yuan,
L. Xiaoming, S. Henghu, N. Wen, (2013), Improvement on pozzolanic reactivity of coal gangue by
integrated thermal and chemical activation, Fuel Vol 109, Pages 527-533.
[19]
S. X. Zhou, (2009), Study on the reaction degree of
calcined coal gangue powder in blended cement by selective solution method. Procedia Earth and Planetary, The
6th International Conference on Mining Science & Technology, pp 634-639.
[20] S. Chhaiba, M.
T. Blanco-Varela, M. Teresa, A. Diouri, (2018), Moroccan oil shale and coal
waste as alternative raw materials in Portland cement clinker manufacture
Clinkerization reactions and clinker characterization, Materiales de
Construcción, vol. 68, no 331, p. 166. https://doi.org/10.3989/mc.2018.07017.
[21] D. Belkheiri, A.
Diouri, M. Taibi, O. Sassi, J. Aride, (2015), Recycling of Moroccan coal gangue
in the elaboration of a Portland clinker, J. Mater.
Environ. Sci. 6 (6) 1570-1577 Belkheiri et al. ISSN: 2028-2508 CODEN: JMESCN.
[22] R. Moussaoui, S. EL Moudni EL Alami,H. Aouraghe H. (Sept 2019), Characterization
of the Zellidja Lead Smelter Slag (Eastern Morocco) in order
to their Valorization in Civil Engineering, Journal of
Ecological Engineering, Volume 20, Issue 8, pages 71–81
https://doi.org/10.12911/22998993/110812.
[23] R. Hakkou, M. Benzaazoua; B. Bussière, (2016), Valorization of
phosphate waste rocks and sludge from the Moroccan phosphate mines: Challenges
and perspectives. Procedia Engineering 138 110 – 118.
[24] S. Oumnih, N. Bekkouch, E. Gharibi,N. Fage, K. Elhamouti, M. El
Ouahabi, (2019). Phosphogypsum waste as additives to lime stabilization of
bentonite, Sustainable Environment Research 29 -35.
https://doi.org/10.1186/s42834-019-0038-z.
[25] R. Hattaf, M. Benchikhi, A Azzouzi, R. El Ouatib, M. Gomina, A. Samdi,
R. Moussa, (2021), Preparation of Cement
Clinker from Geopolymer-BasedWastes, Materials, 14, 6534.
https://doi.org/10.3390/ma14216534
[26] S. Nfissi, Y. Zerhouni, M. Benzaazoua, S. Alikouss, A Chtaini, R.
Hakkou, M. Samir, (Nov 2011),
Caracterisation of the tailings of abandoned mines of Kettara and Roc Blanc
(Jebilet central, Morocco), Ann. Soc. Géol. du Nord.T. 18 (2ème série), p.
43-53.
[27] M. Achik, A. Oulmekki, M.
Ijjaali, H. Benmoussa, N. EL Moudden, S. EL Khattabi, R. EL Khallabi, F. Z. Ahjyyaj,
G. Álvaro Gonzalez, F. Rivera Guitian, (2017). Physicochemical characterization
of an industrial waste: A case study of the pyrrhotite ash from south west of
Morocco, JMES Vol 8, Issue 8, Pages 2738-2746, http://www.jmaterenvironsci.com
[28] H. F. Taylor,
(1997). Cement chemistry (Vol. 2, p. 459), London: Thomas
Telford.
[29] P.Hewlett, , M. Liska, (Eds.), (2019), Lea's chemistry of cement
and concrete, Butterworth-Heinemann.
[30] S-H. Shim, T- H. Lee, S- J. Yang, N. B. M. Noor, J- H- J. Kim, (2021). Calculation of Cement
Composition Using a New Model Compared to the Bogue Model. Materials 14. 4663. https://doi.org/10.3390/ma14164663.
[31] F. Sorrentino, (2011), Chemistry and engineering of the production
process: State of the art, Cement and Concrete Research 41, 616–623.
[32] B. J. R. Mungyeko Bisulandu, F. Marias, (2019), Modélisation de la
chimie du clinker et de l'ingénierie du processus de fabrication du ciment :
État de l'art [ Modeling of cement clinker chemistry and engineering of cement
manufacturing process : State of the art ]. International Journal of Innovation
and Applied Studies. 528-551.
[33] B. Kohlhaas, O. Labahn, Cement Engineers Handbook, 6th edition,
Bauverlag GMBH, Berlin, 1983.
[34] Y. Tao, W. Zhang, D. Shang, Z. Xia, N. Li, W.Y. Ching, F. Wang, S. Hu,
Comprehending the occupying preference of manganese substitution in crystalline
cement clinker phases: A theoretical study, Cem. Concr. Res. 109 (2018) 19–29. doi:10.1016/j.cemconres.2018.04.003.
[35] E. Fundal, (1979), World Cement Technol. 10..
[36] M. A. Aldieb, H. G. Ibrahim, Variation of Feed Chemical Composition
and Its Effect on Clinker Formation–Simulation Process Proceedings of the World
Congress on Engineering and Computer Science 2010, Vol II WCECS 2010, Oct
20-22, 2010, San Francisco, USA.
[37] F. Osawa, N. Shirahama, M. Yamashita, H. Tanaka H, (2015). Effects of
phosphorus oxide in clinker and cement on the properties of high content belt
cement, Cement Science and Concrete Technology. VL 69. P 23-28.
[38] Y. Huang, J. Qian, X. Kang, J. Yu, Y. Fan, Y. Dang, W. Zhang, S. Wang,
(2019). Belite-calcium sulfoaluminate cement prepared with phosphogypsum:
Influence of P2O5 and F on the clinker formation and cement performances,
Construction and Building Materials. VL203, p432 442.
[39] Y. Taha, A. Elghali, R. Hakkou, M. Benzaazoua, (2021), Towards Zero
Solid Waste in the Sedimentary Phosphate Industry: Challenges and Opportunities,
Minerals 1250, https://doi.org/10.3390/ min11111250.