Geometry of Quasi bi-slant conformal Submersions from Kenmotsu manifold

Fahad Sikander, Tanveer Fatima, Mohammad Shuaib

Keywords: Kenmotsu manifold, Riemannian submersions, Conformal bi-slant submersions, quasi bi-slant submersions.

In this study, we examine Quasi bi-slant conformal submersions originating from a Kenmotsu manifold, focusing on the vertical Reeb vector field ? . Initially, we explore the integrability conditions for the distributions defined by quasi-bi-slant submersions. Furthermore, we delve into the geometry of the associated leaves. The research concludes by presenting two intriguing observations regarding the pluriharmonicity of Quasi Bi-Slant Conformal Submersions and includes several non-trivial examples of such submersions.

[1] M. A. Akyol and Y. Gunduzalp., Hemi-slant submersions from almost product Riemannian manifolds, Gulf J. Math., 4(3) (2016), 15-27.

[2] M. A. Akyol., Conformal semi-slant submersions, International Journal of Geometric Methods in Modern Physics, 14(7) (2017), 1750114.

[3] M. A. Akyol and B. Sahin., Conformal slant submersions, Hacettepe Journal of Mathematics and Statistics, 48(1) (2019), 28-44.

[4] M. A. Akyol and B. Sahin., Conformal anti-invariant submersions from almost Hermitian manifolds, Turkish Journal of Mathematics, 40 (2016), 43-70.

[5] M. A. Akyol and B. Sahin., Conformal semi-invariant submersions, Communications in Contemporary Mathematics, 19 (2017), 1650011.

[6] P. Baird and J. C. Wood., Harmonic Morphisms Between Riemannian Manifolds, London Mathematical Society Monographs, 29, Oxford University Press, The Clarendon Press. Oxford, (2003).

[7] J.-P. Bourguignon and H. B. Lawson., Jr., Stability and isolation phenomena for YangMills fields, Comm. Math. Phys., 79 (1981), no. 2, 189–230.

http://projecteuclid.org/euclid.cmp/1103908963. ¨

[8] D. Chinea., Almost contact metric submersions, Rend. Circ. Mat. Palermo, 34(1) (1985), 89-104.

[9] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez and M. Fernandez., Slant submanifolds in Sasakian manifolds, Glasg. Math. J., 42 (1) (2000), 125-138.

[10] I. K. Erken and C. Murathan., On slant Riemannian submersions for cosymplectic manifolds, Bull. Korean Math. Soc., 51(6) (2014), 1749-1771.

[11] M. Falcitelli, S. Ianus and A. M. Pastore., Riemannian submersions and Related Topics, World Scientific, River Edge, NJ, (2004).

[12] A. Gray., Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715–737.

[13] B. Fuglede., Harmonic morphisms between Riemannian manifolds, Annales de l’institut Fourier (Grenoble), 28 (1978), 107-144.

[14] S. Gudmundsson., The geometry of harmonic morphisms, Ph.D. thesis, University of Leeds, (1992).

[15] S. Gudmundsson and J. C. Wood, Harmonic morphisms between almost Hermitian manifolds, Boll. Un. Mat. Ital. B (7) 11 (1997), no. 2, suppl., 185–197.

[16] Y. Gunduzalp., Semi-slant submersions from almost product Riemannian manifolds, Demonstratio Mathematica, 49(3) (2016), 345-356.

[17] Y. Gunduzalp and M. A. Akyol., Conformal slant submersions from cosymplectic manifolds, Turkish Journal of Mathematics, 48 (2018), 2672-2689.

[18] S. Ianu¸s and M. Vi¸sinescu., Space-time compaction and Riemannian submersions, In: Rassias, G.(ed.) The Mathematical Heritage of C. F. Gauss, World Scientific, River Edge (1991), 358-371.

[19] S. Ianu¸s and M. Vi¸sinescu., Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Classical Quantum Gravity, 4 (1987), no. 5, 1317–1325.

http://stacks.iop.org/0264-9381/4/ 1317.

[20] T. Ishihara., A mapping of Riemannian manifolds which preserves harmonic functions, Journal of Mathematics of Kyoto University, 19 (1979), 215-229.

[21] Kenmotsu, K. (1972). A class of almost contact Riemannian manifolds. Tohoku Math., 24, 93-103.

[22] M. T. Mustafa., Applications of harmonic morphisms to gravity, J. Math. Phys., 41 (2000), 6918-6929.

[23] Y. Ohnita., On pluriharmonicity of stable harmonic maps, J. London Math. Soc. (2) 2 (1987), 563-568. 2.2

[24] B. O’Neill., The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459–469. http://projecteuclid.org/euclid.mmj/1028999604.

[25] K. S. Park and R. Prasad., Semi-slant submersions, Bull. Korean Math. Soc. 50(3) (2013), 951-962.

[26] R. Prasad, S. S. Shukla and S. Kumar., On Quasi bi-slant submersions, Mediterr. J. Math., 16 (2019), 155. https://doi.org/10.1007/s00009-019-1434-7.

[27] R. Prasad, M. A. Akyol, P. K. Singh and S. Kumar., On Quasi bi-slant submersions from Kenmotsu manifolds onto any Riemannian manifolds, Journal of Mathematical Extension, 8(16) (2021).

[28] R. Prasad and S. Kumar., Conformal anti-invariant submersions from nearly Kaehler Manifolds, Palestine Journal of Mathematics, 8(2) (2019).

[29] R. Ponge and H. Reckziegel., Twisted products in pseudo-Riemannian geometry, Geom. Dedicata, (1993), 48(1):15-25.

[30] Tanno, S. (1069). The automorphism groups of almost contact metric manfolds. Tohoku  Math., J. 21, 21-38.

[31] B. Sahin., Anti-invariant Riemannian submersions from almost Hermitian manifolds, Central European J. Math., 3 (2010), 437-447.

[32] B. Sahin., Semi-invariant Riemannian submersions from almost Hermitian manifolds, Canad. Math. Bull., 56 (2013), 173-183.

[33] B. S¸ahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie. 1 (2011) 93-105.

[34] B.Sahin, M. A. Akyol Conformal Anti-Invariant Submersion From Almost Hermitian Manifolds, Turk J Math (2016) 40: 43 – 70

[35] M. Shuaib and T. Fatima. A note on conformal hemi-slant submersions, Afr. Mat. 34, 4 (2023).

[36] Sumeet Kumar et al., Conformal hemi-slant submersions from almost hermitian manifolds, Commun. Korean Math. Soc., 35 (2020), No. 3, pp. 999–1018

https://doi.org/10.4134/CKMS.c190448 pISSN: 1225-1763 / eISSN: 2234-3024.

[37] H. M. Tastan, B. S¸ahin and S¸. Yanan, Hemi-slant submersions, Mediterr. J. Math. 13(4) (2016) 2171-2184.

[38] B. Watson., Almost Hermitian submersions, J. Differential Geometry, vol. 11, no. 1, pp. (1976), 147–165. http://projecteuclid.org/euclid.jdg/1214433303

[39] B. Watson., G, G’-Riemannian submersions and nonlinear gauge field equations of general relativity, In: Rassias, T. (ed.) Global Analysis - Analysis on manifolds, dedicated M. Morse. Teubner-Texte Math., 57 (1983), 324-349, Teubner, Leipzig.