[1] M. A. Akyol and Y. Gunduzalp., Hemi-slant
submersions from almost product Riemannian manifolds, Gulf J. Math., 4(3) (2016),
15-27.
[2] M. A. Akyol., Conformal semi-slant
submersions, International Journal of Geometric Methods in Modern Physics,
14(7) (2017), 1750114.
[3] M. A. Akyol and B. Sahin., Conformal slant
submersions, Hacettepe Journal of Mathematics and Statistics, 48(1) (2019),
28-44.
[4] M. A. Akyol and B. Sahin., Conformal
anti-invariant submersions from almost Hermitian manifolds, Turkish Journal of
Mathematics, 40 (2016), 43-70.
[5] P. Baird and J. C. Wood., Harmonic
Morphisms Between Riemannian Manifolds, London Mathematical Society Monographs,
29, Oxford University Press, The Clarendon Press. Oxford, (2003).
[6] J.-P. Bourguignon and H. B. Lawson., Jr.,
Stability and isolation phenomena for YangMills fields, Comm. Math. Phys., 79
(1981), no. 2, 189-230. http://projecteuclid.
org/euclid.cmp/1103908963.
[7] D. Chinea., Almost contact metric
submersions, Rend. Circ. Mat. Palermo, 34(1) (1985), 89-104.
[8] A. Gray., Pseudo-Riemannian almost product
manifolds and submersions, J. Math. Mech., 16 (1967), 715-737.
[9] B. Fuglede., Harmonic morphisms between
Riemannian manifolds, Annales de l'institut Fourier (Grenoble), 28 (1978),
107-144.
[10] S. Gudmundsson., The geometry of harmonic
morphisms, Ph.D. thesis, University of Leeds, (1992).
[11] Y. Gunduzalp., Semi-slant submersions from
almost product Riemannian manifolds, Demonstratio Mathematica, 49(3) (2016),
345-356.
[12] S. Ianu,s and M. Vissinescu., Space-time
compaction and Riemannian submersions, In: Rassias, G.(ed.) The Mathematical
Heritage of C. F. Gauss, World Scientific, River Edge (1991), 358-371.
[13] T. Ishihara., A mapping of Riemannian
manifolds which preserves harmonic functions, Journal of Mathematics of Kyoto
University, 19 (1979), 215-229.
[14] S. Kumar., A. T. Vanli., S. Kumar., and R. Prasad., Conformal quasi
bi-slant submersions, Analele Stiintifice ale Universitatii Al I Cuza din
Iasi-Matematica 68, no. 2 (2022).
[15] M. T. Mustafa., Applications of harmonic
morphisms to gravity, J. Math. Phys., 41 (2000), 6918-6929.
[16] Y. Ohnita., On pluriharmonicity of stable
harmonic maps, J. London Math. Soc. (2) 2 (1987), 563-568. 2.2
[17] B. O'Neill., The fundamental equations of
a submersion, Michigan Math. J., 13 (1966), 459-469. http://projecteuclid.org/euclid.mmj/1028999604.
[18] K. S. Park and R. Prasad., Semi-slant
submersions, Bull. Korean Math. Soc. 50(3) (2013), 951-962.
[19] R. Prasad, S. S. Shukla and S. Kumar., On
Quasi bi-slant submersions, Mediterr. J. Math., 16 (2019), 155. https://doi.org/10.1007/s00009-0191434-7.
[20] R. Prasad, M. A. Akyol, S. Kumar and P. K.
Singh., Quasi bi-slant submersions in contact geometry, CUBO, A Mathetical
Journal, no. 124 (2022), 1-22.
[21] R. Prasad, M. A. Akyol, P. K. Singh and S.
Kumar., On Quasi bi-slant submersions from Kenmotsu manifolds onto any
Riemannian manifolds, Journal of Mathematical Extension, 8(16) (2021).
[22] R. Ponge and H. Reckziegel., Twisted
products in pseudo-Riemannian geometry, Geom. Dedicata, (1993), 48(1):15-25.
[23] B. Sahin., Anti-invariant Riemannian submersions from almost Hermitian
manifolds, Central European J. Math., 3 (2010), 437-447.
[24] B. Sahin., Semi-invariant Riemannian
submersions from almost Hermitian manifolds, Canad. Math. Bull., 56 (2011),
173-183.
[25] B. S,ahin, Slant submersions from almost
Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie. 1 (2011) 93-105.
[26] B. Sahin., Riemannian Submersions,
Riemannian Maps in Hermitian Geometry and their Applications, Elsevier,
Academic Press, (2017).
[27] Sumeet Kumar et al., Conformal hemi-slant
submersions from almost hermitian manifolds, Commun. Korean Math. Soc., 35
(2020), No. 3, pp. 999-1018 https://doi.org/10.4134/CKMS.c190448
pISSN: 1225-1763 / eISSN: 2234-3024.
[28] B. Watson., Almost Hermitian submersions,
J. Differential Geometry, vol. 11, no. 1, pp. (1976), 147-165.
[29] B. Watson., G, G'-Riemannian submersions
and nonlinear gauge field equations of general relativity, In: Rassias, T.
(ed.) Global Analysis - Analysis on manifolds, dedicated M. Morse.
Teubner-Texte Math., 57 (1983), 324-349, Teubner, Leipzig.