Geometry of Conformal Quasi Bi-slant Submersions

Fahad Sikander, Mohammad Shuaib

Keywords: Almost Product Riemannian manifold, Riemannian submersions, bi-slant submersions, quasi bi-slant submersions.

In this paper, we study conformal quasi bi-slant submersions from almost product Riemannian manifolds onto Riemannian manifolds as a generalization of bi-slant submersions and hemi-slant submersions. We discuss integrability conditions for distributions with the study of geometry of leaves of the distributions. Also, we discuss pluriharmonicity for conformal quasi bislant submersions.

[1] M. A. Akyol and Y. Gunduzalp., Hemi-slant submersions from almost product Riemannian       manifolds, Gulf J. Math., 4(3) (2016), 15-27.

[2] M. A. Akyol., Conformal semi-slant submersions, International Journal of Geometric Methods in Modern Physics, 14(7) (2017), 1750114.

[3] M. A. Akyol and B. Sahin., Conformal slant submersions, Hacettepe Journal of Mathematics and Statistics, 48(1) (2019), 28-44.

[4] M. A. Akyol and B. Sahin., Conformal anti-invariant submersions from almost Hermitian manifolds, Turkish Journal of Mathematics, 40 (2016), 43-70.

[5] P. Baird and J. C. Wood., Harmonic Morphisms Between Riemannian Manifolds, London Mathematical Society Monographs, 29, Oxford University Press, The Clarendon Press. Oxford, (2003).

[6] J.-P. Bourguignon and H. B. Lawson., Jr., Stability and isolation phenomena for YangMills fields, Comm. Math. Phys., 79 (1981), no. 2, 189-230. http://projecteuclid. org/euclid.cmp/1103908963.

[7] D. Chinea., Almost contact metric submersions, Rend. Circ. Mat. Palermo, 34(1) (1985), 89-104.

[8] A. Gray., Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715-737.

[9] B. Fuglede., Harmonic morphisms between Riemannian manifolds, Annales de l'institut Fourier (Grenoble), 28 (1978), 107-144.

[10] S. Gudmundsson., The geometry of harmonic morphisms, Ph.D. thesis, University of Leeds, (1992).

[11] Y. Gunduzalp., Semi-slant submersions from almost product Riemannian manifolds, Demonstratio Mathematica, 49(3) (2016), 345-356.

[12] S. Ianu,s and M. Vissinescu., Space-time compaction and Riemannian submersions, In: Rassias, G.(ed.) The Mathematical Heritage of C. F. Gauss, World Scientific, River Edge (1991), 358-371.

[13] T. Ishihara., A mapping of Riemannian manifolds which preserves harmonic functions, Journal of Mathematics of Kyoto University, 19 (1979), 215-229.


[14] S. Kumar., A. T. Vanli., S. Kumar., and R. Prasad., Conformal quasi bi-slant submersions, Analele Stiintifice ale Universitatii Al I Cuza din Iasi-Matematica 68, no. 2 (2022).

[15] M. T. Mustafa., Applications of harmonic morphisms to gravity, J. Math. Phys., 41 (2000), 6918-6929.

[16] Y. Ohnita., On pluriharmonicity of stable harmonic maps, J. London Math. Soc. (2) 2 (1987), 563-568. 2.2

[17] B. O'Neill., The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459-469. http://projecteuclid.org/euclid.mmj/1028999604.

[18] K. S. Park and R. Prasad., Semi-slant submersions, Bull. Korean Math. Soc. 50(3) (2013), 951-962.

[19] R. Prasad, S. S. Shukla and S. Kumar., On Quasi bi-slant submersions, Mediterr. J. Math., 16 (2019), 155. https://doi.org/10.1007/s00009-0191434-7.

[20] R. Prasad, M. A. Akyol, S. Kumar and P. K. Singh., Quasi bi-slant submersions in contact geometry, CUBO, A Mathetical Journal, no. 124 (2022), 1-22.

[21] R. Prasad, M. A. Akyol, P. K. Singh and S. Kumar., On Quasi bi-slant submersions from Kenmotsu manifolds onto any Riemannian manifolds, Journal of Mathematical Extension, 8(16) (2021).

[22] R. Ponge and H. Reckziegel., Twisted products in pseudo-Riemannian geometry, Geom. Dedicata, (1993), 48(1):15-25.


[23] B. Sahin., Anti-invariant Riemannian submersions from almost Hermitian manifolds, Central European J. Math., 3 (2010), 437-447.

[24] B. Sahin., Semi-invariant Riemannian submersions from almost Hermitian manifolds, Canad. Math. Bull., 56 (2011), 173-183.

[25] B. S,ahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie. 1 (2011) 93-105.

[26] B. Sahin., Riemannian Submersions, Riemannian Maps in Hermitian Geometry and their Applications, Elsevier, Academic Press, (2017).

[27] Sumeet Kumar et al., Conformal hemi-slant submersions from almost hermitian manifolds, Commun. Korean Math. Soc., 35 (2020), No. 3, pp. 999-1018 https://doi.org/10.4134/CKMS.c190448 pISSN: 1225-1763 / eISSN: 2234-3024.

[28] B. Watson., Almost Hermitian submersions, J. Differential Geometry, vol. 11, no. 1, pp. (1976), 147-165.

[29] B. Watson., G, G'-Riemannian submersions and nonlinear gauge field equations of general relativity, In: Rassias, T. (ed.) Global Analysis - Analysis on manifolds, dedicated M. Morse. Teubner-Texte Math., 57 (1983), 324-349, Teubner, Leipzig.