[1] Patil,
B. P., Kharade, K. G., & Kamat, R. K. (2020). Investigation on data
security threats & solutions. International Journal of Innovative Science
and Research Technology, 5(1), 79-83.
[2] Kapoor,
A., Gupta, A., Gupta, R., Tanwar, S., Sharma, G., & Davidson, I. E. (2021).
Ransomware detection, avoidance, and mitigation scheme: a review and future
directions. Sustainability, 14(1), 8.
[3] Khan,
N., Abdullah, J., & Khan, A. S. (2017). Defending malicious script attacks
using machine learning classifiers. Wireless Communications and Mobile
Computing, 2017.Thambi-Rajah, T., & Jahankhani, H. (2021). The Role of Deep
Neural Network in the Detection of Malware and APTs. In Challenges in
the IoT and Smart Environments (pp. 161-188). Springer, Cham.
[4] Khan,
N., Johari, A., & Adnan, S. (2017). A Taxonomy Study of XSS
Vulnerabilities. Asian J. Inf. Technol, 16, 169-177.
[5] Case, A., Jalalzai,
M. M., Firoz-Ul-Amin, M., Maggio, R. D., Ali-Gombe, A., Sun, M., & Richard
III, G. G. (2019). HookTracer: A system for automated and accessible API hooks
analysis. Digital Investigation, 29, S104-S112.
[6] Khan,
N., Abdullah, J., & Khan, A. S. (2015, August). Towards vulnerability prevention
model for web browser using interceptor approach. In 2015 9th International
Conference on IT in Asia (CITA) (pp. 1-5). IEEE.
[7] Rathore,
H., Sahay, S. K., Nikam, P., & Sewak, M. (2021). Robust android malware
detection system against adversarial attacks using q-learning. Information
Systems Frontiers, 23(4), 867-882.
[8] Schultz M, Eskin E,
Zadok F, Stolfo S. Data mining methods for detection of new malicious
executables. In: Proceedings of the IEEE computer society symposium on research
in security and privacy; 2001, pp. 38–49.
[9] Shabtai A, Moskovitch
R, Elovici Y, Glezer C. Detection of malicious code by applying machine
learning classifiers on static features: A state-of-the-art survey. Inf Secur
Tech Rep. 2009;14(1):16–29.
[10]
Firdausi I, lim C, Erwin A, Nugroho AS. Analysis
of machine learning techniques used in behavior-based malware detection. In:
Second international conference on advances in computing, control, and
telecommunication technologies, Jakarta; 2010, pp. 201–203.
[11]
Ahmadi, M., Ulyanov, D., Semenov, S., Trofimov,
M., & Giacinto, G. (2016, March). Novel feature extraction, selection and
fusion for effective malware family classification. In Proceedings of the sixth
ACM conference on data and application security and privacy (pp. 183-194).
[12]
Rathore, H., Agarwal, S., Sahay, S. K., &
Sewak, M. (2018, December). Malware detection using machine learning and deep
learning. In International Conference on Big Data Analytics (pp. 402-411).
Springer, Cham.
[13]
Nataraj, L., Karthikeyan, S., Jacob, G.,
& Manjunath, B. S. (2011, July). Malware images: visualization and
automatic classification. In Proceedings of the 8th international
symposium on visualization for cyber security (pp. 1-7).
[14]
Yajamanam, S., Selvin, V. R. S., Di
Troia, F., & Stamp, M. (2018, January). Deep Learning versus Gist
Descriptors for Image-based Malware Classification. In Icissp (pp.
553-561).
[15]
Bhodia, N., Prajapati, P., Di Troia, F.,
& Stamp, M. (2019). Transfer learning for image-based malware
classification. arXiv preprint arXiv:1903.11551.
[16]
Kalash, M., Rochan, M., Mohammed, N.,
Bruce, N. D., Wang, Y., & Iqbal, F. (2018, February). Malware
classification with deep convolutional neural networks. In 2018 9th
IFIP international conference on new technologies, mobility and security (NTMS) (pp.
1-5). IEEE.
[17]
Choi, S., Jang, S., Kim, Y., & Kim,
J. (2017, October). Malware detection using malware image and deep learning.
In 2017 International Conference on Information and Communication
Technology Convergence (ICTC) (pp. 1193-1195). IEEE.
[18]
Pascanu, R., Stokes, J. W., Sanossian,
H., Marinescu, M., & Thomas, A. (2015, April). Malware classification with
recurrent networks. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (pp. 1916-1920). IEEE.
[19]
Lu, R. (2019). Malware detection with
lstm using opcode language. arXiv preprint arXiv:1906.04593.
[20]
Mikolov, T., Chen, K., Corrado, G., & Dean,
J. (2013). Efficient estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781.
[21]
Yan, J., Qi, Y., & Rao, Q. (2018).
Detecting malware with an ensemble method based on deep neural network. Security
and Communication Networks, 2018.
[22]
https://www.kaggle.com/datasets/piyushrumao/malware-executable-detection
[23]
Sharpe, D. (2015). Chi-square test is
statistically significant: Now what?. Practical Assessment, Research,
and Evaluation, 20(1), 8.
[24]
Weka 3: Machine Learning Software in Java: https://www.cs.waikato.ac.nz/ml/weka/
[25]
Abiyev, R. H., & Ma’aitaH, M. K. S. (2018).
Deep convolutional neural networks for chest diseases detection. Journal of
healthcare engineering, 2018.
[26]
MK Gurucharan, Basic CNN Architecture:
Explaining 5 Layers of Convolutional Neural Network Available at: https://www.upgrad.com/blog/basic-cnn-architecture/
[27]
Sak, H., Senior, A. W., & Beaufays,
F. (2014). Long short-term memory recurrent neural network architectures for
large scale acoustic modeling.
[28]
Fan, B., Wang, L., Soong, F. K., &
Xie, L. (2015, April). Photo-real talking head with deep bidirectional LSTM.
In 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (pp. 4884-4888). IEEE.
[29]
Chandra, R., Jain, A., & Singh
Chauhan, D. (2022). Deep learning via LSTM models for COVID-19 infection
forecasting in India. PloS one, 17(1), e0262708.
[30]
Patil, S. A., Raj, L. A., & Singh,
B. K. (2021). Prediction of IoT traffic using the gated recurrent unit neural
network-(GRU-NN-) based predictive model. Security and Communication
Networks, 2021.
[31]
Hamayel, M. J., & Owda, A. Y.
(2021). A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and
bi-LSTM Machine Learning Algorithms. AI, 2(4), 477-496.
[32]
Gaurav Singhal, LSTM versus GRU Units in RNN,
Available at: https://www.pluralsight.com/guides/lstm-versus-gru-units-in-rnn
[33]
Ganaie, M. A., & Hu, M. (2021).
Ensemble deep learning: A review. arXiv preprint arXiv:2104.02395.
[34]
Wang, Y., Pan, Z., Yuan, X., Yang, C.,
& Gui, W. (2020). A novel deep learning based fault diagnosis approach for
chemical process with extended deep belief network. ISA transactions, 96,
457-467.
[35]
Ko, J., Baldassano, S. N., Loh, P. L.,
Kording, K., Litt, B., & Issadore, D. (2018). Machine learning to detect
signatures of disease in liquid biopsies–a user's guide. Lab on a Chip, 18(3),
395-405.
[36]
Sesmero, M. P., Ledezma, A. I., &
Sanchis, A. (2015). Generating ensembles of heterogeneous classifiers using
stacked generalization. Wiley interdisciplinary reviews: data mining
and knowledge discovery, 5(1), 21-34.
[37]
Pfahringer, B., Bensusan, H., &
Giraud-Carrier, C. G. (2000, June). Meta-Learning by Landmarking Various
Learning Algorithms. In ICML (pp. 743-750).
[38]
Yao, H., Liu, Y., Wei, Y., Tang, X.,
& Li, Z. (2019, May). Learning from multiple cities: A meta-learning
approach for spatial-temporal prediction. In The World Wide Web
Conference (pp. 2181-2191).