[1] R. Liu, K. T. Tan,Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z.
Lu, H. Yanga and D. Jiang. Covalent organic frameworks: an ideal platform for
designing ordered materials and advanced applications. Chem. Soc. Rev., 50
(2021) 120-242.
[2] D. Jiang. Covalent Organic Frameworks: An Amazing Chemistry
Platform for Designing Polymers. Chem., 6 (2020) 2461-2483.
[3] K. Geng, T. He, R. Liu, S. Dalapati, K. T. Tan, Z. Li, S. Tao,
Y. Gong, Q. Jiang, and D. Jiang. Covalent Organic Frameworks: Design,
Synthesis, and Functions. Chem. Rev., 120 (2020) 8814–8933.
] 4] H. Wang, H. Wang, Z. Wang, L. Tang, G.
Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou and X. Li. Covalent organic framework
photocatalysts: structures and applications, Chem. Soc. Rev., 49 (2020)
4135-4165.
[5] J. Wang and S. Zhuang, Covalent organic frameworks
(COFs) for environmental applications, Coord. Chem. Rev., 400 (2019) 213046.
[6] Z. Wang, S. Zhang, Y. Chen, Z. Zhang and S. Ma,
Covalent organic frameworks for separation applications, Chem. Soc. Rev., 49
(2020) 708-735.
[7] Y. Yusran,
H. Li, X. Guan, Q. Fang and S. Qiu, Covalent organic frameworks for catalysis,
EnergyChem, 2 (2020) 100035.
[8] X. Zhao, P. Pachfule and A. Thomas, Covalent organic
frameworks (COFs) for electrochemical applications, Chem. Soc. Rev., 50 (2021)
6871-6913 .
[9] S.-Y. Ding and W. Wang, Covalent organic frameworks
(COFs): from design to applications, Chem. Soc. Rev., 42 (2013) 548-568.
[10] X. Feng, X. Ding, D. Jiang, Covalent organic
frameworks, Chem. Soc. Rev., 41 (2012) 6010-6022.
[11] K. Geng, T.
He, R. Liu, S. Dalapati, K.T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang and D. Jiang, Covalent organic frameworks: design,
synthesis, and functions, Chem. Rev., 120 (2020) 8814-8933.
[12] X. Guan, F. Chen, Q.
Fang and S. Qiu, Design and applications of three dimensional covalent organic
frameworks, Chem. Soc. Rev., 49 (2020) 1357-1384.
[13] Y. Li, W.
Chen, G. Xing, D. Jiang and L. Chen, New synthetic strategies toward covalent
organic frameworks, Chem. Soc. Rev., 49 (2020) 2852-2868.
[14] M.S. Lohse and T. Bein, Covalent
organic frameworks: structures, synthesis, and applications, Adv. Funct. Mater.,
28 (2018) 1705553.
[15] H. Furukawakyle, C.
O’keeffeand and O. M. Yaghi. The Chemistry and Applications of Metal-Organic
Frameworks. Science, 341 (2013) 6149.
[16] Q.-Y. Liu, J.-F. Li and J.-W. Wang. Research of covalent
organic frame materials based on porphyrin units. J Incl Phenom Macrocycl Chem.,
95 (2019) 1–15.
[17] X. Wu, X. Zhang, Y. Li, B. Wang, Y. Li and L. Chen. A
porphyrin-based covalent organic framework with pH-dependent fluorescence. J.
Mater. Sci., 56 (2021) 2717–2724.
[18] H. Shan, D. Cai, X. Zhang, Q. Zhu, P. Qin and J. Baeyens.
Donor-acceptor type two-dimensional porphyrin-based covalent organic framework
for visible-light-driven heterogeneous photocatalysis. Chem. Eng. J., 432
(2022) 134288.
[19] J. Chen, Y. Zhu and S. Kaskel. Porphyrin-Based Metal–Organic
Frameworks for Biomedical Applications. Angew. Chem. Int. Ed., 60 (2021)
5010-5035.
[20] C. Zhao, L. Zhang, Q. Wang, L. Zhang, P. Zhu, J. Yu, and Y.
Zhang. Porphyrin-Based Covalent Organic Framework Thin Films as Cathodic
Materials for “On–Off–On” Photoelectrochemical Sensing of Lead Ions. ACS Appl.
Mater. Interfaces., 13 (2021) 20397–20404
[21] H. Huang, F. Li, Y. Zhang
and Y. Chen. Two-dimensional
graphdiyne analogue Co-coordinated porphyrin covalent organic framework
nanosheets as a stable electrocatalyst for the oxygen evolution reaction. J.
Mater. Chem. A., 7 (2019) 5575-5582
[22] A.P. Côté, I. A. Benin, N. W. Ockwig, M. O’Keeffe, A. J.
Matzger and O. M. Yaghi. Porous, crystalline, covalent organic frameworks.
Science, 310 (2005) 1166–1170.
[23] S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S.K. Dey,
L. Liao, W.W. Ambrogio, Y.Y. Botros, X. Duan, S. Seki, J.F. Stoddart and O.M.
Yaghi. Covalent organic frameworks with high charge carrier mobility, Chem.
Mater., 23 (2011) 4094–4097.
[24] S. Kandambeth, D.B. Shinde, M.K. Panda, B. Lukose, T. Heine
and R. Banerjee. Enhancement of chemical stability and crystallinity in
porphyrin containing covalent organic frameworks by intramolecular hydrogen
bonds. Angew. Chem. Int. Ed., 52 (2013) 13052–13056.
[25] B. Gole, V. Stepanenko, S. Rager, M. Grüne, D.D. Medina, T.
Bein, F. Würthner and F. Beuerle. Microtubular self-assembly of covalent
organic frameworks. Angew. Chem. Int. Ed., 57 (2018) 846–850.
[26] X. Xu, S. Wang, Y. Yue, and N. Huang. Semiconductive
Porphyrin-Based Covalent Organic Frameworks for Sensitive Near-Infrared
Detection. ACS Appl. Mater. Interfaces, 12 (2020) 37427−37434.
[27] Y. Li , J. Zhang, K. Zuo, Z. Li, Y. Wang, H. Hu, C. Zeng, H.
Xu, B. Wang and Y. Gao. Covalent Organic Frameworks for Simultaneous CO2
Capture and Selective Catalytic Transformation. Catalysts, 11 (2021) 1133.
[28] X. Wu1, X. Zhang, Y. Li, B. Wang, Y. Li and L. Chen. A
porphyrin-based covalent organic framework with pH-dependent fluorescence. J.
Mater. Sci., 56 (2021) 2717–2724.
[29] R. Shen, W. Zhu, X. Yan, Ta. Li, Yo. Liu, Y. Li, S. Daia and Z.-G. Gu. A porphyrin porous
organic polymer with bicatalytic sites for highly efficient one-pot tandem
catalysis. Chem. Commun., 55 (2019) 822-825.
[30] V. S. P. K. Neti, J. Wang, S. Deng, and L. Echegoyen.
Synthesis of a Polyimide Porous Porphyrin Polymer for Selective CO2
Capture. J. Chem., (2015) Article ID 281616: http://dx.doi.org/10.1155/2015/281616.
[31] C. Zhang, S. Zhang, Y. Yan, F. Xia, A. Huang, and Y. Xian.
Highly Fluorescent Polyimide Covalent Organic Nanosheets as Sensing Probes for
the Detection of 2,4,6-Trinitrophenol. ACS Appl. Mater. Interfaces, 19 (2017)
13415−13421.
[32] M. Fathalla. Synthesis, CO2 Adsorption and
Catalytic Properties of Porphyrin-Pyromellitic Dianhydride Based Porous
Polymers. Macromol. Res., 29 (2021) 321–326.
[33] A. Nagai, X. Chen, X. Feng, X. Ding, Z. Guo, and D. Jiang. A
Squaraine-Linked Mesoporous Covalent Organic Framework. Angew. Chem., 125
(2013) 3858 –3862.