Tetra(4-aminophenyl) porphyrin-based Covalent Organic Frameworks

Maher Fathalla

Keywords: : Porphyrins; Covalent Organic Frameworks; Porous Organic Polymers; Imide; Imine.

Covalent Organic Frameworks (COFs) are robust crystalline porous materials with unique properties and have promising applications in many fields such as gas adsorption, sensing and catalysis. COFs properties can be tailored by the judicious choice of their building units. Stemming from its unique properties, rigid structure and synthetic accessibility, tetra(4-aminophenyl)porphyrin (TAPP) has been employed as a building unit to construct various COF materials. This review highlights the different synthetic approaches that were exploited by researchers to assemble COF materials based on TAPP. 

[1] R. Liu, K. T. Tan,Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z. Lu, H. Yanga and D. Jiang. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev., 50 (2021) 120-242.

[2] D. Jiang. Covalent Organic Frameworks: An Amazing Chemistry Platform for Designing Polymers. Chem., 6 (2020) 2461-2483.

[3] K. Geng, T. He, R. Liu, S. Dalapati, K. T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, and D. Jiang. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem. Rev., 120 (2020) 8814–8933.

] 4] H. Wang, H. Wang, Z. Wang, L. Tang, G. Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou and X. Li. Covalent organic framework photocatalysts: structures and applications, Chem. Soc. Rev., 49 (2020) 4135-4165.

[5]  J. Wang and S. Zhuang, Covalent organic frameworks (COFs) for environmental applications, Coord. Chem. Rev., 400 (2019) 213046.

[6]  Z. Wang, S. Zhang, Y. Chen, Z. Zhang and S. Ma, Covalent organic frameworks for separation applications, Chem. Soc. Rev., 49 (2020) 708-735.

 [7]  Y. Yusran, H. Li, X. Guan, Q. Fang and S. Qiu, Covalent organic frameworks for catalysis, EnergyChem, 2 (2020) 100035.

 [8] X. Zhao, P. Pachfule and A. Thomas, Covalent organic frameworks (COFs) for electrochemical applications, Chem. Soc. Rev., 50 (2021) 6871-6913 .

  [9] S.-Y. Ding and W. Wang, Covalent organic frameworks (COFs): from design to applications, Chem. Soc. Rev., 42 (2013) 548-568.

  [10] X. Feng, X. Ding, D. Jiang, Covalent organic frameworks, Chem. Soc. Rev., 41 (2012) 6010-6022.

 [11]  K. Geng, T. He, R. Liu, S. Dalapati, K.T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang  and  D. Jiang, Covalent organic frameworks: design, synthesis, and functions, Chem. Rev., 120 (2020) 8814-8933.

[12] X. Guan, F. Chen, Q. Fang and S. Qiu, Design and applications of three dimensional covalent organic frameworks, Chem. Soc. Rev., 49 (2020) 1357-1384.

[13] Y. Li, W. Chen, G. Xing, D. Jiang and L. Chen, New synthetic strategies toward covalent organic frameworks, Chem. Soc. Rev., 49 (2020) 2852-2868.

[14] M.S. Lohse and T. Bein, Covalent organic frameworks: structures, synthesis, and applications, Adv. Funct. Mater., 28 (2018) 1705553.

 [15] H. Furukawakyle, C. O’keeffeand and O. M. Yaghi. The Chemistry and Applications of Metal-Organic Frameworks. Science, 341 (2013) 6149.

[16] Q.-Y. Liu, J.-F. Li and J.-W. Wang. Research of covalent organic frame materials based on porphyrin units. J Incl Phenom Macrocycl Chem., 95 (2019) 1–15.

[17] X. Wu, X. Zhang, Y. Li, B. Wang, Y. Li and L. Chen. A porphyrin-based covalent organic framework with pH-dependent fluorescence. J. Mater. Sci., 56 (2021) 2717–2724.

[18] H. Shan, D. Cai, X. Zhang, Q. Zhu, P. Qin and J. Baeyens. Donor-acceptor type two-dimensional porphyrin-based covalent organic framework for visible-light-driven heterogeneous photocatalysis. Chem. Eng. J., 432 (2022) 134288.

[19] J. Chen, Y. Zhu and S. Kaskel. Porphyrin-Based Metal–Organic Frameworks for Biomedical Applications. Angew. Chem. Int. Ed., 60 (2021) 5010-5035.

[20] C. Zhao, L. Zhang, Q. Wang, L. Zhang, P. Zhu, J. Yu, and Y. Zhang. Porphyrin-Based Covalent Organic Framework Thin Films as Cathodic Materials for “On–Off–On” Photoelectrochemical Sensing of Lead Ions. ACS Appl. Mater. Interfaces., 13 (2021) 20397–20404

[21] H. Huang,   F. Li,   Y. Zhang  and  Y. Chen. Two-dimensional graphdiyne analogue Co-coordinated porphyrin covalent organic framework nanosheets as a stable electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A., 7 (2019) 5575-5582

[22] A.P. Côté, I. A. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger and O. M. Yaghi. Porous, crystalline, covalent organic frameworks. Science, 310 (2005) 1166–1170.

[23] S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S.K. Dey, L. Liao, W.W. Ambrogio, Y.Y. Botros, X. Duan, S. Seki, J.F. Stoddart and O.M. Yaghi. Covalent organic frameworks with high charge carrier mobility, Chem. Mater., 23 (2011) 4094–4097.

[24] S. Kandambeth, D.B. Shinde, M.K. Panda, B. Lukose, T. Heine and R. Banerjee. Enhancement of chemical stability and crystallinity in porphyrin containing covalent organic frameworks by intramolecular hydrogen bonds. Angew. Chem. Int. Ed., 52 (2013) 13052–13056.

[25] B. Gole, V. Stepanenko, S. Rager, M. Grüne, D.D. Medina, T. Bein, F. Würthner and F. Beuerle. Microtubular self-assembly of covalent organic frameworks. Angew. Chem. Int. Ed., 57 (2018) 846–850.

[26] X. Xu, S. Wang, Y. Yue, and N. Huang. Semiconductive Porphyrin-Based Covalent Organic Frameworks for Sensitive Near-Infrared Detection. ACS Appl. Mater. Interfaces, 12 (2020) 37427−37434.

[27] Y. Li , J. Zhang, K. Zuo, Z. Li, Y. Wang, H. Hu, C. Zeng, H. Xu, B. Wang and Y. Gao. Covalent Organic Frameworks for Simultaneous CO2 Capture and Selective Catalytic Transformation. Catalysts, 11 (2021) 1133.

[28] X. Wu1, X. Zhang, Y. Li, B. Wang, Y. Li and L. Chen. A porphyrin-based covalent organic framework with pH-dependent fluorescence. J. Mater. Sci., 56 (2021) 2717–2724.

[29] R. Shen, W. Zhu, X. Yan, Ta. Li, Yo. Liu, Y. Li,  S. Daia and Z.-G. Gu. A porphyrin porous organic polymer with bicatalytic sites for highly efficient one-pot tandem catalysis. Chem. Commun., 55 (2019) 822-825.

[30] V. S. P. K. Neti, J. Wang, S. Deng, and L. Echegoyen. Synthesis of a Polyimide Porous Porphyrin Polymer for Selective CO2 Capture. J. Chem., (2015) Article ID 281616: http://dx.doi.org/10.1155/2015/281616.

[31] C. Zhang, S. Zhang, Y. Yan, F. Xia, A. Huang, and Y. Xian. Highly Fluorescent Polyimide Covalent Organic Nanosheets as Sensing Probes for the Detection of 2,4,6-Trinitrophenol. ACS Appl. Mater. Interfaces, 19 (2017) 13415−13421.

[32] M. Fathalla. Synthesis, CO2 Adsorption and Catalytic Properties of Porphyrin-Pyromellitic Dianhydride Based Porous Polymers. Macromol. Res., 29 (2021) 321–326.

[33] A. Nagai, X. Chen, X. Feng, X. Ding, Z. Guo, and D. Jiang. A Squaraine-Linked Mesoporous Covalent Organic Framework. Angew. Chem., 125 (2013) 3858 –3862.