
Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

23

Islamic University Journal of Applied Sciences (IUJAS)

https://journals.iu.edu.sa/jesc/Main/Issues

Volume VII, Issue II, December 2025, Pages 23-38

Advanced Threat Detection Using Structural Features and Graph Neural

Networks for Malware Analysis

Nasser Alsharif*

Department of Sciences and Technology, Ranyah University College, Taif University

Taif 21944, Saudi Arabia

* Corresponding author: (Nasser Alsharif), Email: n.alsharif@tu.edu.sa

Abstract

 Malware enriched with polymorphism, and obfuscation, has surpassed traditional signature and

heuristic-based detection approaches. Machine learning and deep learning methods such as

Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs) have enhanced

malware classification performance by utilizing static and sequential input as features. Nevertheless,

the effectiveness of these approaches is limited due to their inability to model structural dependencies,

which are crucial for identifying threats. This study, we propose a malware detection framework

utilizing Graph Neural Networks (GNNs) to identify structural relationships within malware samples.

The structural elements among the malware samples are incorporated within nodes/ and edges that

apply to nodes, thereby allowing us to extract behavioral semantics that were not captured in previous

models. The framework is evaluated using the EMBER dataset, which has 2,381 static and dynamic

malware features; features are selected using Chi-square tests. We analyse advanced GNNs: Graph

Convolutional Networks (GCNs); and Graph Attention Networks (GATs). Our findings demonstrate

that the GNN-based malware detection framework outperforms classical detection methods (e.g.,

SVM, Random Forest, CNN, and RNN) consistently across multiple instances. This study establishes

GNNs as a scalable, interpretable, and accurate approach for next-generation malware detection, and

as a method that is resilient to adversarial evasion and structurally aware of malware behaviors.

Keywords: Malware Detection; Graph Neural Networks; Structural Features; GNN Explainer;

EMBER Dataset.

https://doi.org/10.63070/jesc.2025.0.19
Received 27 May 2025; Revised 02 August 2025; Accepted 06 September 2025.

Available online 10 September 2025.

Published by Islamic University of Madinah on behalf of Islamic University Journal of Applied Sciences. This

is a free open access article under Publisher's own license.

https://journals.iu.edu.sa/jesc/Main/Issues
mailto:n.alsharif@tu.edu.sa
https://doi.org/10.63070/jesc.2025.0.19

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

24

1. Introduction:

The pace of development for cybersecurity threats is now unprecedented, ranging from small to

difficult malware attacks that are hard to detect. Traditional methods of preventing malware attacks,

such as signatures and heuristic types, have long been the basis for cyber defense [1]. Nonetheless,

such approaches have grave limitations, particularly in the detection of new and unknown variants of

malware and even polymorphism. For example, bypassing traditional defense mechanisms, attackers

will commonly employ evasion techniques, including methods for obfuscation, encryption, and

adversarial adjustments [2]. This has led to a new demand for intelligent and adaptable malware

detectors that are capable of evaluating and categorizing malware more effectively. The rapid strides

in artificial intelligence (AI) and deep learning have yielded promising breakthroughs in recent years,

and also with malware detection. Machine learning models, particularly deep learning-based methods

such as Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), have

achieved major advances in both malware classification as well as anomaly detection [3]. However,

these models typically focus on static and behavioural features taken from samples of malware, treating

each sample as if it were a sequence-dependent structure itself. As a result, this approach often

overlooks extremely significant relational and structural dependences among malware, elements that

typically provide the core of its behaviour patterns, such as execution traces for virus-related activity.

Malware operates through a complex set of interactions involving API calls, system processes, and

control flow relationships. Understanding these intricate dependence relations can offer a much more

comprehensive perspective of how a malware instance functions and spreads [4]. Traditional machine

learning models often miss out on these underlying structures, and thus their ability to detect complex

malware threats is restricted [5]. In order to overcome these limitations, Graph Neural Networks

(GNNs) have emerged as a powerful new choice for malware analysis and threat detection [6]. Unlike

traditional deep learning methods, GNNs are explicitly designed to work with graph-structured data,

allowing them to capture the complex relationships within malware samples [7].

In GNN, components of a malicious program, such as system calls, functions, and execution

paths, can be represented by nodes in the graph, where interactions and dependencies between them

are represented as edges [8]. This graph structure makes a much more detailed analysis of how malware

behaves, which is better than traditional methods at detecting certain forms of malicious behaviour

that might be difficult to find. In this regard, GNNs are able to learn from these graph representations

and perceive patterns and dependencies that traditional models may overlook. Given its ability to

understand structural graph patterns, a GNN-based malware detection system can improve

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

25

classification accuracy, enhance generalization to different malware families, and provide increased

resistance to evasion strategies used by attackers.

Despite these advances, AI-enabled malware detection also presents a number of challenges.

Many of the current deep learning-based models struggle to effectively handle real-world data sets of

large scale, which are the genuine source of malware data [9]. Moreover, adversarial attacks on AI-

based security models cause people to wonder if these systems can be trusted and whether such attacks

will work in practice against them. Despite some exploration of graph-based malware detection

techniques, it has often resulted in methods with poor scalability and efficiency or that are easily

manipulated by new attack strategies [10]. This study aims to fill this gap with a new kind of GNN-

based malware detection system that not only increases detection accuracy but also improves model

robustness and interpretability against adversarial manipulations.

To achieve this, the study focuses on designing and manufacturing a malware detection system

that links graph neural networks with structural malware features. The method advanced involves

transforming malware samples and their features into graphs using such as control flow graphs,

dependency graphs, and system call sequences. This research adds to the current endeavours in AI-

driven cybersecurity, demonstrating the potential of Graph Neural Networks for malware analysis. By

leveraging relationships among malware nodes through structured data representation, GNN-based

models provide an entirely new way of looking at threat recognition that is effective. This is an

invaluable resource with which to enhance cybersecurity defenses in a landscape increasingly rife with

complexity and digital risk. This research opens up new possibilities for the application of graph-based

deep learning in malware detection, and offers an opportunity to further explore improving security

solutions even upgrading them to the next level.

The remainder of this paper is structured as follows. Section 2 reviews related work on graph-

based malware detection and GNNs. Section 3 outlines the proposed methodology, including the

dataset, feature processing, and GNN model design. Section 4 presents the experimental setup and

results. Section 5 covers model validation and explainability. Section 6 concludes the paper with key

findings and future directions.

2. Related work

The use of graph-based methodologies, including GNNs, has garnered a considerable amount of

attention toward malware detection and analysis. A study [11] were the first to employ GNNs for

cross-architecture IoT malware detection by mapping binary files to function call graphs (FCGs) as

higher-level, cross-architecture invariant features. This shows the value of using graph representations

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

26

to capture complex program behaviours in a manner that is not sensitive to differences in various

hardware configurations. Inspired by graph representations, authors [12] carried out an extensive

review of the strength of graph-based data structures in intrusion detection systems. They suggest that

graph-based models provide a higher level of abstraction or resistance to system activities and have

less to evade by attackers. Similarly, a study by [13] showed that graph-based semantic analysis is

very effective at decoding obfuscated code, and that GNNs are capable of distinguishing fine-grain

semantic differences in binary code, which is essential for malware analysis. When applied to malware

classification, the incorporation of structural features from CFGs has been the subject of much

attention. Authors [14] surveyed state-of-the-art methods using CFGs with machine learning methods

and summarized how diverse feature extraction and classification mechanisms can improve the

accuracy of detection. This is consistent with the general tendency to use graph models to encode the

intrinsic behavior of malicious software. Besides, advanced signal processing methods for graph

signals emerged to possibly derive useful features to perform detection. A study by [15] proposed the

graph frequency cepstral coefficient (GFCC), a new feature based on the graph Fourier analysis, to

characterize the spectrum of a graph signal structured from the system data. These features can also be

used in combination with structural graph features, thus yielding richer representations for malware

detection. More recent studies also consider the fusion of multiple neural network architectures for

detection performance improvement. A study by [16] developed financial fraud detection and showed

the combination of GNN, CNN, and LSTM networks in one framework, which can learn deep

information patterns for financial transactions. While being financial data-oriented, this approach

demonstrates the capability of hybrid models that could be extended to malware analysis by acquiring

various behavioural signs. In general, the literature suggests an increasing acknowledgement that

structural features and GNNs perform and are complementary to each other in malware detection. Such

approaches exploit the graph nature of program behaviours, call sequences, and system logs to

improve detection decision results. GNNs can abstract the system behaviours into graph

representations, meanwhile taking advantage of powerful feature extracting methods such as GSP-

based feature [17], which makes them promising candidates for future malware analysis frameworks.

3. Proposed Approach

The proposed approach leverages GNNs to effectively analyze malware by exploiting structural

features intrinsic to malicious software. The algorithm for the proposed approach is given in Algorithm

1. The methodology comprises the following detailed steps:

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

27

3.1 Dataset and Preprocessing

In this study, we use the EMBER dataset [18] containing 900000 training samples, a reasoning that is

based on the rich, publicly available, and provides an exact description for each malicious and benign

Windows executable file. It involves a diverse set of static features like PE header metadata, byte

histograms, string data, imported/exported APIs, and section information. This dataset is very helpful

for extracting useful patterns related to malware analysis. The dataset was pre-processed, and all the

missed, noisy values were removed. The distribution of various benign sample categories and multiple

malware families is distributed inversely in the training and testing subsets to improve the

generalization and robustness of our model.

3.2 Feature Extraction

In this study, feature extraction was done using both static and dynamic analysis to get more

comprehensive information about malware samples. From the static analysis, both byte and structural

features, such as n-gram series of opcodes, frequency of imported API calls, sizes of PE sections,

entropies, and control flow graphs (CFGs) generated from disassembly binary files were extracted.

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

28

These structure and control flow-based features represent the foundation and work logic of the files

in the malware. Through dynamic analysis, sandbox-execution traces, behavioural features, system

call sequences, registry and file access patterns, and network communications are extracted. These

runtime behaviours provide additional information, in particular when it comes to stealthy or packed

malware, which could escape a static analysis approach alone. The hybrid of static and dynamic

features makes the malware characteristics more robust, subsequently improving the accuracy of

detection and classification.

3.3 Feature Selection via Chi-square Test

The Chi-square (χ²) test is used as a statistical feature selection method to determine the most

important features for malware classification [19]. This method is especially powerful for categorical

and count features like API use counts or the presence of opcode n-grams. The feature-target

(malicious vs. benign) class label association strength under the independence assumption is taken into

consideration by applying the Chi-square test as given in Eq. [1]. Features with high Chi-square values

are informative and class-dependent, indicating that the feature is highly associated with the

classification target.

The feature selection process involves the following steps:

1. For each feature 𝑓𝑖, compute the Chi-square statistic

𝜒2 ∑
(𝑂−𝐸)2

𝐸
 (1)

where 𝑂 is the observed frequency and 𝐸 is the expected frequency assuming independence between

the feature and class label.

2. Rank all features based on their χ2 scores.

3. Select the top-k features that exceed a predefined significance threshold (e.g., p < 0.05) or

retain the top N% percentile features for further processing.

This feature selection step reduces dimensionality, lowers computational overhead, and enhances the

signal-to-noise ratio by removing irrelevant or redundant features [20]. Ultimately, it improves the

performance and efficiency of the Graph Neural Network by ensuring the model focuses on the most

discriminative and statistically significant inputs.

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

29

3.4 Structural Feature Encoding

The structural features are the basis of the graph-based malware detection approach used in this study.

Structural features. Unlike flat statistical features, structural features can capture the intrinsic

architectural and relation properties of the malware binaries. Important structural characteristics of

both are encoded into directed graphs, including CFGs, opcode n-gram sequences, function/API call

dependencies, and PE section placements. Nodes denote semantically relevant entities such as basic

blocks or API calls, and edges indicate their control, calls, or data dependence. This graph

representation enables GNN to capture rich patterns of malicious interactions that cross different

components and take into account the execution logic, invocation sequences, and modular

interactions. By encoding this structure explicitly, the model becomes more effective in detecting

stealthy/ polymorphic malware that conducts simple changes on surface-level features but keeps

important structures in the underlined architecture. The incorporation of this structural information

not only enhances classification accuracy but also contributes to generalization to various malware

families.

3.5. Graph Construction and Representation

To encode structural characteristics of malware in an interpretable graph representation, malware

samples need to be modelled as a graph-based representation capturing their underlying program logic,

behavioural characteristics, and control dependencies. In this approach, the internal structure of an

executable is represented as a directed graph 𝐺(𝑉, 𝐸), where 𝑉 is a set of nodes and 𝐸 is a set of

directed edges between them. This structured encoding allows the model to capture the topological

patterns and context relationships underlying malicious binaries, which are often discarded in standard

flat features-based models.

Graph nodes represent semantically meaningful components of a program. These are features based

on functions present in the binary (custom-defined and system-defined), API calls that the malware

uses to communicate with the operating system, and basic blocks in the CFGs, which are a sequence

of instructions with a single entry and single exit point. Given a node 𝜈𝑖 ∈ 𝑉, it has the associated

feature vector 𝑥𝑖, that encodes opcode n-gram frequencies, PE section metadata, entropy scores, API

type categories, and execution statistics. This feature vector has a compact but informative

representation capturing how the program unit participates in the role and behaviour of the executable.

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

30

It contains edges that represent relations between nodes that correspond to program control and data

flow. For example, an edge from the node 𝑣𝑖to the node 𝑣𝑗 , represented by 𝑒𝑖𝑗 ∈ 𝐸, could be the edge

for a function call, a control transfer, or usage of any common variables. These edges can be bound

by a weight or type according to the type of relationship they indicate. For instance, control flow edges

represent the flow of instruction execution; call graph edges denote static or dynamic calls; and data

flow edges represent the flow, transformation, or correlation of the data between program elements. In

graph-based malware analysis, edges represent control-flow, calls, or data dependencies, often

weighted by metrics like call frequency. For dynamic analysis, temporal order captures execution

sequence.

Nodes and edges are annotated with semantic metadata to assist subsequent learning. Node labels

classify entities into several groupings like “network-related API”, “file access routine”, or “registry

operation”, depending on behaviour or API family. Edge labels are used to specify the relationship,

and they provide some guidance to the model to differentiate between control transitions and

functional dependencies.

This graph 𝐺 is the input to the GNN, which learns node embeddings through iterative message

passing. At each layer 𝑙 of the GNN, the embedding of the node 𝜈𝑖 is updated as expressed in Eq. (2).

ℎ𝑖
(𝑙)

= 𝜎(∑ 𝑓(ℎ𝑖
(𝑙−1)

,𝑗∈𝒩(𝑖) ℎ𝑗
(𝑙−1)

, 𝑎𝑖𝑗)) (2)

Where, ℎ𝑖
(𝑙)

 is the node representation at layer 𝑙, 𝒩(𝑖) is the set of neighbours of node 𝑖, 𝑓(.) is a

learnable aggregation function, 𝜎 is a non-linear activation function ReLU

For multiple rounds of such updates, node embeddings learn multi-hop neighbourhood information

and structural dependencies. These node-level embeddings are pooled to obtain a graph-level

representation of the overall graph. This final vector 𝑥𝑖 passed through a classification layer to predict

whether the sample is benign or a member of some malware family 𝑘. Transforming executable files

into graphs and capturing their structural and behavioural correlations, the representation is conducive

to detecting subtle malicious nuances in executables, even in their obfuscated or polymorphic form.

It forms the basis for the construction of a strong, scalable , and interpretable GNN-based malware

detection framework.

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

31

3.6 GNN-Based Detection Model

In order to develop an efficient and reliable malware detection system to classify malware samples

based on structural properties, we construct a GNN-based malware detection model, which is able to

capture both local and global features from graph-structured representations of executable codes. The

model structure combines sophisticated graph embedding methods, multiple GNN layers for deep

feature encoding, and an end-to-end supervised method for binary/multi-class classification tasks. The

architecture of GNN is given in Fig. 1.

Fig: Graph Neural Network

In the first stage, graph embedding translates each node in the malware graph to a high-dimensional

dense vector that captures the local context, structural role, and meaning of the node. For this, we

experiment with three popular forms of GNNs: Graph Convolutional Networks (GCN), Graph

Attention Networks (GAT), and GraphSAGE. GCNs summarise the information of the neighbours of

a node via a convolution-like operation. Then the feature update rule of a GCN layer can be

formulated as given in Eq. (3).

𝐻(𝑙+1) = 𝜎(𝐷̃−
1

2 𝐴̃𝐷̃−
1

2 𝐻(𝑙)𝑊(𝑙)) (3)

Where, 𝐴̃ = 𝐴 + 𝐼 is the adjacency matrix with added self-loops, 𝐷̃ is the corresponding degree matrix,

𝐻(𝑙) is the matrix of node features at layer 𝑙, 𝑊(𝑙) is the learnable weight matrix, 𝜎 is an activation

function ReLU.

GAT utilizes an attention mechanism that assigns different weights for the neighbour nodes during the

aggregation process to enable the model to pay more attention to important structural correlation.

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

32

GraphSAGE, in turn, promotes scalability by sampling and aggregating features from a bounded

number of neighbours. When node embeddings are extracted, a graph-level embedding is created

through a readout or pooling operation on all nodes' representations. We use pooling techniques,

including global mean pooling, global max pooling, and attention-based pooling to obtain a single

vector 𝑔𝜖ℝ 𝑑 to summarize the entire graph as given in Eq. (4).

𝐠 = 𝐏𝐎𝐎𝐋 ({𝐡𝐢|𝐯𝐢 ∈ 𝐕}) (4)

This graph-based representation captures the holistic structural/behavioural fingerprints of the

malware and is fed into the classification network. The whole model architecture consists of multiple

layers of stacked GNNs, which achieve hierarchical representation learning and are capable of

capturing the complex and high-order relations among graph nodes. To counter the vanishing of

gradients and the degradation of features in deep models, we introduce residual connections across

GNN layers, allowing for more effective gradient spreading as well as for the preservation of lower-

layer information. The final layer of the GNN is followed by one or more fully connected (dense)

layers, which play the role of the classifier. These layers interpret the learned graph-level embeddings

and map them to the labels at the output layer, which can be binary (malicious or benign) or multi-

class (malware family types). The final result is sent through a softmax or sigmoid activation function

based on the classification change.

The model is trained in a supervised manner with the cross-entropy loss that measures the discrepancy

between the predicted class probabilities and the ground truth labels, Eq. (5).

ℒ = ∑ 𝑦𝑖𝑙𝑜𝑔(𝑦̂𝑖)
𝑁
𝑖=1 (5)

Where 𝒚𝒊 is the true label and 𝒚̂𝒊 is the predicted probability for sample 𝒊.

For stable and fast optimization, we use the Adam optimizer, with the adaptive learning rate and

momentum-based updates. We also use multiple regularizations to promote generalization and reduce

overfitting, such as Dropout layers between dense layers. Weight decay to penalize large weights.

Early stopping, monitoring validation loss to halt training when performance plateaus.

Hyperparameters (e.g., learning rate, batch size, the number of GNN layers, the embedding

dimension, the dropout rate) are optimized either by grid search or Bayesian optimization to search for

the most suitable model setting. This GNN-based design, and the capability it possesses to learn

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

33

meaningful representations of graph-structured malware, forms a strong, scalable base for modern

threat discovery and malware characterization.

4. Experimental Evaluation

We verify the efficiency and generalization of the proposed GNN-based malware detection method

through large-scale experiments on the EMBER dataset. At first, the preprocessing on the dataset was

performed, and the dataset was divided into three parts: train, validation, and test. We use a stratified

80/10/10 split that ensures each of the split subsets has a proportional number of the malicious as well

as the benign samples. This stratification is important to prevent the class imbalance from affecting

the performance metric and to improve the robustness of the model. The feature selection based on

the Chi-square test is adopted before model training to keep only the most discriminative features.

Using the Chi-square test, only 1000 features were used out of 2,381 features available in the dataset.

Table 1: Performance Evaluation

Evaluation Method Formula Description

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Measures the proportion of

correctly predicted samples

among the total predictions.

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Indicates how many

predicted positive samples

are truly positive.

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Measures how many actual

positive samples were

correctly predicted.

F1-Score 2. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Harmonic Mean of precision

and recall, balancing false

positives and false negatives.

The GNN model and the baselines were implemented in Python 3.10, using PyTorch, and Geometric

and Scikit-learn were used for building the models. All experiments are conducted on a machine with

an NVIDIA RTX 3090 GPU (24 GB VRAM), an Intel Core i9 CPU, and 64 GB RAM and operating

on Ubuntu 22.04 LTS. The use of GPU acceleration greatly facilitates the training speed of GNN

layers, especially when graphs have a large number of nodes. The performance metrics used in the

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

34

study are given in Table 1ensure a comprehensive and standardized evaluation of detection

performance.

To validate the performance of our proposed model, we compare it against several state-of-the-

art baseline classifiers used in the malware detection literature, such as Support Vector Machine

(SVM), which is a discriminative margin-based classifier that is well-suited for high-dimensional

data. Random Forest (RF), which is a simple bagging-based classier that is commonly used in the

literature as a performance benchmark for malware detection problems; CNN a deep learning

architecture typically applied on transformed feature vectors or image-based representations of

malware, RNN which is a powerful class of neural networks that is designed to capture sequential

dependencies, and hence performs well in analyzing opcode or system call sequences.

Table 2: Experimental Results

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) ROC-AUC (%)

SVM 92.1 90.2 89.8 90.0 93.7

Random Forest 94.5 92.7 92.1 92.4 95.3

CNN 95.8 94.0 93.6 93.8 96.2

RNN 95.3 93.7 93.1 93.4 95.8

Proposed GNN 99.1 98.4 97.9 98.2 99.7

As proven by the results given in Table 2, the proposed GNN model performs better than all baselines

in all metrics and attains an accuracy of 99.1%, a precision of 98.4%, and an ROC-AUC of 99.7%,

indicating excellent identification accuracy of malicious versus benign samples. This gain is mainly

because GNN can capture the hierarchical and relational features by message passing, both of which

traditional models and sequence-based deep networks are not able to perform. Also, the higher values

of Recall and F1-score of the GNN model demonstrate robustness in detecting more malware samples

with a lower number of false negatives, which is important in cyber cybersecurity area where a missed

detection can be of extreme consequences.

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

35

Fig. 2. Comparison of performance evaluation

The experimental results and comparison of various models, as given in Fig. 2, justify that returning

to graph-based structural learning by using GNNs is very effective without requiring the prior

knowledge of designing new classic machine learning models, as well as traditional deep learning

models.

5. Model Validation

In order to make sure that the designed GNN-based malware detection model is both effective enough

and reliable enough, as well as generally applicable, quantitative validation and qualitative

explainability analysis were applied. These attempts offer an analysis of the decision-making process

of the model, and confirm that the learned patterns are indeed semantically and functionally

meaningful.

We initially use k-fold cross-validation (𝑘 = 5) to test the robustness and the generalization

ability of the model on various subsets of the dataset. This provides a test set of 37 data points and

ensures each data point goes through both training and testing. Performance is averaged across folds

to reduce overfitting and the chance that an evaluation may be biased towards a specific data split.

The standard deviation of accuracy, precision, and F1-score across the different folds is still less than

0.5%, which indicates that the model has a stable performance.

We employ explainability methods tailored for graph-based learning. In particular, we adopt

GNNExplainer, the state-of-the-art explainable framework on GNNs that finds the most important

subgraph and node features for a given prediction. GNNExplainer works by training a soft mask on

the input graph that identifies a few nodes and edges with maximum influence on the model’s output.

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

36

Given a sample classified as malicious, GNNExplainer finds the most influential paths (e.g., sequences

of API calls or control flow transitions) used by the model to reach its conclusion. This helps to check

that the model is not overfitting to random correlations. Extract signatures by identifying the

behavioural factors of the malware. We further investigate overall trends by combining results over

all samples, demonstrating that the GNN invariably attends to behaviour-rich parts (i.e., file system

manipulation, network, and registry access sequences), which are identifiable characteristics of

maliciousness. Conversely, the benign examples have naturally occurring graphs, with low interaction

breadth and easily discernible structural motifs.

This interpretability analysis not only validates the semantic correspondence that exists

between the model’s attention and known threat patterns but also imparts trust for real-world

deployment of GNN-based detection systems. It also provides a window for adding human-in-the-loop

feedback mechanisms in which expert analysts can refine or validate the automatic predictions. The

simultaneous application of cross-validation and graph explainability methods guarantees that the

resulting model is not only accurate but also transparent, reliable, and auditable, all of which are

essential to a model that can be deployed in modern cybersecurity environments. These experimental

results show the effectiveness of utilizing graph representations to improve the detection,

generalization, and evasion resistance.

6. Conclusion

In this work, we propose a novel, robust, and scalable malware detector driven by GNNs, and show

substantial performance gain compared to traditional machine learning and deep learning approaches.

The proposed GNN-based approach takes advantage of structural information such as control flow

graphs, API call dependencies, and system call sequences to discover complex relational patterns that

are ignored in flat or sequential input representations. Experiments on the EMBER dataset demonstrate

that the performance of the updated model surpasses that of state-of-the-art works, with the testing

accuracy and ROC-AUC scores reaching 99.1% and 99.7% respectively, and having an edge over

traditional classifiers such as SVM, Random Forest, and deep learning models such as CNN and

RNNs by all metrics. Additionally, incorporating the GNNExplainer module improves the model

interpretability by introducing key subgraphs and node features, leading to classification results that

are important for trust in real-world cybersecurity scenarios. In addition, the generalization and

robustness of the proposed model are further verified by 5-fold cross-validation, and its performance

variance is stable. These results demonstrate the effectiveness of using structural awareness from

GNNs in malware detection, providing an effective line of defense against polymorphic and evasive

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

37

threats. This study paves the way for future studies in explainable and adaptive graph-based malware

analysis mechanisms, taking a step forward to more intelligent, interpretable, and robust cybersecurity

approaches.

References:

[1] M. I. Malik, A. Ibrahim, P. Hannay, and L. F. Sikos, “Developing resilient cyber-physical

systems: a review of state-of-the-art malware detection approaches, gaps, and future directions,”

Computers, vol. 12, no. 4, p. 79, 2023.

[2] F. K. Alarfaj and N. A. Khan, “Enhancing the performance of SQL injection attack detection

through probabilistic neural networks,” Applied Sciences, vol. 13, no. 7, p. 4365, 2023.

[3] A. Redhu, P. Choudhary, K. Srinivasan, and T. K. Das, “Deep learning-powered malware

detection in cyberspace: a contemporary review,” Frontiers in Physics, vol. 12, p. 1349463, 2024.

[4] C. Wei, Q. Li, D. Guo, and X. Meng, “Toward identifying APT malware through API system

calls,” Security and Communication Networks, vol. 2021, no. 1, p. 8077220, 2021.

[5] A. A. Alqarni, N. Alsharif, N. A. Khan, L. Georgieva, E. Pardade, and M. Y. Alzahrani, “MNN-

XSS: Modular neural network based approach for XSS attack detection,” Computers, Materials and

Continua, vol. 70, no. 2, pp. 4075–4085, 2022.

[6] L. Li, F. Qiang, and L. Ma, “Advancing Cybersecurity: Graph Neural Networks in Threat

Intelligence Knowledge Graphs,” in Proc. Int. Conf. Algorithms, Software Engineering, and Network

Security, Apr. 2024, pp. 737–741.

[7] H. Shokouhinejad et al., “Recent advances in malware detection: Graph learning and

explainability,” arXiv preprint arXiv:2502.10556, 2025.

[8] D. Zapzalka, S. Salem, and D. Mohaisen, “Semantics-Preserving Node Injection Attacks Against

GNN-Based ACFG Malware Classifiers,” IEEE Transactions on Dependable and Secure

Computing, 2024.

[9] M. A. Hossain et al., “AI-enabled approach for enhancing obfuscated malware detection: a hybrid

ensemble learning with combined feature selection techniques,” International Journal of System

Assurance Engineering and Management, pp. 1–19, 2024.

[10] T. Bilot, N. El Madhoun, K. Al Agha, and A. Zouaoui, “A survey on malware detection with

graph representation learning,” ACM Computing Surveys, vol. 56, no. 11, pp. 1–36, 2024.

[11] C. Li, G. Shen, and W. Sun, “Cross-architecture Internet-of-Things malware detection based on

graph neural network,” in Proc. Int. Joint Conf. Neural Networks (IJCNN), Jul. 2021, pp. 1–7.

[12] T. Bilot, N. El Madhoun, K. Al Agha, and A. Zouaoui, “Graph neural networks for intrusion

detection: A survey,” IEEE Access, vol. 11, pp. 49114–49139, 2023.

Islamic University Journal of Applied Sciences VII, (II), (2025) 23-38

38

[13] R. Cohen, R. David, F. Yger, and F. Rossi, “Identifying Obfuscated Code through Graph-Based

Semantic Analysis of Binary Code,” in Int. Conf. Complex Networks and Their Applications, Dec.

2024, pp. 135–148. Cham: Springer Nature Switzerland.

[14] S. Mitra, S. A. Torri, and S. Mittal, “Survey of malware analysis through control flow graph

using machine learning,” in Proc. IEEE 22nd Int. Conf. Trust, Security and Privacy in Computing

and Communications (TrustCom), Nov. 2023, pp. 1554–1561.

[15] L. Xu et al., “A Novel Feature Based on Graph Signal Processing for Detection of Physical

Access Attacks,” in Odyssey, 2022, pp. 107–111.

[16] Y. Cheng et al., “Advanced financial fraud detection using GNN-CL model,” in Proc. Int. Conf.

Computers, Information Processing and Advanced Education (CIPAE), Aug. 2024, pp. 453–460.

[17] L. Xu et al., “A Novel Feature Based on Graph Signal Processing for Detection of Physical

Access Attacks,” in Odyssey, 2022, pp. 107–111.

[18] “EMBER dataset,” Available: https://github.com/elastic/ember. Accessed: Apr. 10, 2025.

[19] I. S. Thaseen and C. A. Kumar, “Intrusion detection model using fusion of chi-square feature

selection and multi class SVM,” Journal of King Saud University-Computer and Information

Sciences, vol. 29, no. 4, pp. 462–472, 2017.

[20] N. A. Khan, M. Y. Alzaharani, and H. A. Kar, “Hybrid feature classification approach for

malicious JavaScript attack detection using deep learning,” International Journal of Computer

Science and Information Security, vol. 18, no. 5, 2020.

https://github.com/elastic/ember?utm_source=chatgpt.com

